跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/14 03:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊岳龍
研究生(外文):Yech-Lung Chuang
論文名稱:二相蒸汽腔體散熱器實驗分析
論文名稱(外文):Experimental Evaluation of the Two-phase Vapor Chamber Heat Sink
指導教授:李基禎李基禎引用關係郭鴻森
指導教授(外文):Ji-Jen LeeHong-Sen Kou
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:93
語文別:英文
論文頁數:99
中文關鍵詞:熱管二相流散熱器
外文關鍵詞:Heat pipeHeat sinkvapor chamber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:5
近年來,電子設備不斷在縮小化及高性能上精進,促使電子散熱裝置日趨重要,進而發展許多不同型式的散熱裝置,因此本文主要以Vapor Chamber的方式運用熱管的原理,可做極快速高潛熱釋放的熱傳特性,在低成本及最高安全考量下,運用於一般傳統鋁質散熱器上,藉以提升一般散熱器的散熱效率,使其成為所謂傳熱超導體,以因應未來超高能電子元件的散熱需求。
本文利用市面上一般桌上型電腦所使用的P4散熱器,再予以加工,製造出下方有一Chamber的Vapor Chamber散熱器,針對工作液體填充量,填充液體的不同以及添加奈米粒子對散熱器效能之影響進行實驗探討。由實驗資料顯示填充量為50%時,散熱效果最佳,但因其在20毫升,25毫升以及30毫升之間,其溫度變化差異較大,所以便進一步實驗CPU在24毫升以及26毫升時其溫度的變化,結果顯示,在25毫升時其溫度仍為最好,而甲醇的填入比水的填入對散熱更有效果。
In recent years, the electronic equipment is continuously developing in shrinking its size and turning high performance, this trend urges the heat sink of electronics device to become gradually important. So it develops many different types of heat-lost equipment. So this thesis makes use of the type of heat pipe to design a vapor chamber heat sink, it can do very quickly and high latent heat releasing of heat transfer characteristic at low cost and the highest safety considering. It can use at a traditional aluminum heat sink to promote heat transfer efficiency of a usual heat sink, it can become a so-called heat transferring superconductor to manage the heat transfer requirement of the higher-energy electronic element.
This thesis uses the usual P4 heat sink of the P.C. at the business situation, and manufactures it to become a vapor chamber heat sink with a chamber at the heat sink’s underneath. This thesis proceeds the experiment and discussing to counter with the filling capacity of the working fluid, the difference of the filling fluid and the influence of the heat sink efficiency with adding Nanofluid. From the experiment data shows that when filling capacity at 50%, it has the best heat transfer efficiency, but because when it at 20 milliliter, 25 milliliter and 30 milliliter, its temperature change is much bigger, so we experiment CPU’s temperature change at 24 milliliter and 26 milliliter, the result shows that the measuring temperature at 25 milliliter is the best. And the Methanol’s filled is useful to heat transfer than the water’s filled.
Abstract…………………………………………………………………...I
Acknowledgement………………………………………………………III
Table of contents………………………………………………………..IV
List of Figures………………………………………………………….VII
List of Tables……………………………………………………………XI
Symbol Explain……………………………………………………….XIII
Chapter 1 Introduction……………………………………………………1
1-1 Foreword………………………………………………………1
1-2 Purpose………………………………………………………...3
1-3 Literature Review……………………………………………...5
Chapter 2 Basic Theory-Boiling………………………………………….8
2-1 Bubble occurs…………………………………………………8
2-2 Contact Angle…………………………………………………9
2-3 Hysteresis……………………………………………………10
2-4 Nucleation and surface coarsely intensity…………………...11
2-5 Bubble grows and rises……………………………………...12
2-6 Flow Map……………………………………………………12
2-6-1 Bubbly flow……………………………………………...13
2-6-2 Slug Flow………………………………………………...14
2-6-3 Churn Flow………………………………………………14
2-6-4 Annular Flow…………………………………………….15
2-7 Quality and Void Fraction…………………………………...15
Chapter 3 Basic Theory- Evaporation…………………………………..17
3-1 Boiling Curve and Sphere…………………………………...20
3-2 Boiling heat transfer experience formula……………………21
3-2-1 Condensation part heat transfer………………………….22
3-2-2 Evaporation part heat transfer……………………………26
3-2-3 Overall Heat Transfer………………………………….32
3-2-4 Temperature and Thermal Resistance…………………32
3-2-5 Critical heat flux……………………………………….33
3-2-6 The loading amount of working fluid…………………34
Chapter 4 Vapor Chamber’s theory and theorem……………………...37
4-1 Vapor Chamber’s theorem and device………………………37
4-2 Working Fluid and Wick Structure………………………….38
4-3 Vapor Chamber’s advantage………………………………...39
Chapter 5 Model Build and Experiment………………………………...40
5-1 The choice of the working fluid……………………………..40
5-2 The choice of the geometry shape and the material…………41
5-3 Model’s manufacturing……………………………………...42
5-4 Enclosing the fluid…………………………………………..43
5-5 Experiment devices………………………………………….44
5-6 Experiment procedure and measuring……………………….47
Chapter 6 Experiment Result and Discussion…………………………..49
6-1 Performance estimation and discussion……………………..49
6-2 Influence of Filling Amount…………………………………49
6-3 Compare with Working Fluid Water and Methanol…………51
6-4 Adding Nanofluid …………………………………………...52
Chapter 7 Conclusion and Recommendation for future studies………...53
7-1 Conclusion…………………………………………………..53
7-2 Recommendation for future studies…………………………54
References………………………………………………………………55
1.Tong, A.,Simon, T.W.and You, S.M., “ Contact Angle Effects on Boiling Incipience of Highly-Wetting Liquids”Int. J. Heat Mass Transfer. Vol.33,No.1,pp.91-103,1990.
2.Steiner, D., and Taborek, J., “Flow Boiling Heat Transfer in Vertical Tubes Correlated by an Asymptotic Model”Heat transfer engineering. Vol.13,no.2,pp.43-68,1992.
3.Jayanti, S., and Hewitt, G. F., “Prediction of the slug-to-churn flow transition in vertical two-phase flow”Int.J.Multiphase Flow,Vol.18,no.6,pp.847-860,1992.
4.Kandlikar,S.G.,“Ageneral Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes” Journal of heat transfer February 1990, Vol.112,pp.219-228.
5.Hahne,E.,and Spindlep,K., “Fully Developed Nucleated Boiling in Upflow and Downflow”Int. J. Heat Mass Transfer. Vol.32, no.10,pp.1799-1808,1989.
6.Chen, J.C., “A Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow,” Industrial and Engineering Chemistry, Process design and Development, Vol.5 no.3,pp.322-329 1966.
7.Gungor, K. E., and Winterton, R.H.S., “A General Corrlation for Flow Boiling in Tubes and Annuli” Int.J.Heat Mass Transfer.Vol.29,no.3,pp.351-358,1986.
8.Liu, Z., and Winterton, R.H.S., “A General Correlation for Saturated and Subcooled Flow Boiling in Tubes and Annuli, Based on a Nucleate Pool Boiling Equation” Int. J. Heat Mass Tramsfer. Vol.34, no.11,pp.2759-2766,1991.
9.Shah, M. M., “A General Correlation for Heat Transfer During Film Condensation Inside Pipes” Int. J. Heat Mass Transfer. Vol.22, pp.547-556,1979.
10.Nakano, A., Nishio, M., and Murakami, M., “An Experimental Study of Heat Transfer Characteristics of a Two-Phase Nitrogen Thermosyphon Over a Large Dynamic Range Operation” Cryogenics, Vol,38, pp.1259-1266,1998.
11.Rohsenow, W.M. “A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids” Trans. ASME84, pp969-982,1962.
12.Shiraishi, M., Kikuchi, K., and Yamanishi, T., “Investigation of Heat Transfer Characteristics of a Two-Phase Closed Thermosyphon.” In Advances in Heat Pipe Technology, pp.95-104 Pergamon press, New York 1981.
13.Negisih, K., and Sawada, T., “Heat Transfer Performance of an Inclined Two-Phase Closed Thermosyphon” Int. J. Mass Transfer. Vol.26, no.8,pp.547-556,1983.
14.Katto, Y., “Generalized Correlation for Critical Heat Flux of the Natural Convection Boiling in Confined Channels” Trans.Japan Soc. Mech.Engrs 44,pp3908-3911,1978.
15.Waills, G. B., “Flooding Constraint in Wickless Heat Pipe”Trans.ASME 127,pp273-283,1973.
16.Imura, H., and Kusuda, H. K., “Heat Transfer in a Two-Phase Closed Thermosyphon” Tran, Japan Soc. Mech. Engrs 45, pp712-722,1979.
17.Streltsov, A. I., “Theoretical and Experimental Investigation of Optimum Filling for Heat Pipes” Heat Transfer Soviet Research, Vol.7, no.1, January-February, pp.23-27,1975.
18.H.Imura, K.Sasagurchi and H. Kozai, “Critical Heat Flow in a Closed Two-Phase Thermosyphon” Int. J. Heat Mass Transfer. Vol.26, no.8, pp.1181-1188,1983.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊