跳到主要內容

臺灣博碩士論文加值系統

(44.210.77.73) 您好!臺灣時間:2024/02/22 01:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李政道
研究生(外文):Cheng-Tao Li
論文名稱:以分散式智慧型感測器為基礎的可變結構分散控制於自走車
論文名稱(外文):Distributed Intelligent Sensor Based Decentralized Variable Structure Control for a Class of Car-Like Mobile Robots
指導教授:王照明王照明引用關係黃志良黃志良引用關係
指導教授(外文):C. M. WangC. L. Hwang
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:93
語文別:英文
論文頁數:54
中文關鍵詞:感測器為基礎之控制分散式控制可變結構控制自走車混合H2/ H∞最佳化
外文關鍵詞:Decentralized controlDistributed controlMixed H2/ H∞ optimizationMobile robotSensor based controlVariable structure control.
相關次數:
  • 被引用被引用:2
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文發展出一套自走車應用混合 與 的分散式可變結構控制的軌跡追蹤與避障。應用於動態障礙的閃避與目標,兩部分開架設的CCD將自走車的位置與動態障礙的位置標示出來,並且計算最適合路徑由權重較高的CCD所抓取的資訊經由無線模組傳輸至自走車並且對自走車下達參考的控制訊號。在自走車控制器方面, 部分是將系統輸出訊號與參考輸出訊號的誤差和控制訊號,一起加以極小化達成用最少的能量達到符合要求的系統性能。然而,輸出的干擾是因為自走車次系統之間的相互作用、建模誤差與外部負載。為能有效抵抗,所以又加入 的觀念,將系統輸出對雜訊的敏感性乘上一個權重加以極小化,有效降低雜訊對系統的影響。
為了改善系統的表現,再加入切換模式控制,提高強健性,穩定性分析是根據李雅普諾夫穩定性的法則。根據後面的實驗,能證明控制器的有效能力。
In this thesis, the trajectory tracking and obstacle avoidance of a car-like mobile robot (CLMR) within sensor networks via mixed decentralized variable structure control (DVSC) was developed. For implementing (dynamic) obstacle avoidance and target tracking, two distributed CCD (charge-coupled device) cameras were set up to realize the dynamic position of the CLMR and the obstacle. Based on the authority of these two CCD cameras, a suitable reference input for the proposed controller of the CLMR was planned by the CCD camera with higher authority and transmitted to CLMR by a wireless module. As for the controller design of the CLMR, the norm of the output error (i.e., the difference between the output of the reference model and system output) and weighted control input was first minimized to obtain a control such that smaller energy consumption with bounded tracking error was assured. However, an output disturbance caused by the interactions among subsystems of CLMR, modeling error, and external load deteriorated system performance. In this situation, the norm of weighted sensitivity between output disturbance and system output was minimized to attenuate the effect of output disturbance. For further improving system performance, a switching control for every subsystem of CLMR was designed. The stability of the overall system was verified by Lyapunov stability criterion. The experiments were also carried out to evaluate the usefulness of the proposed control system.
TABLE OF CONTENTS

中文摘要.……………..……………………….……..…………………i
ABSTRACT………………..…………………….…….………………ii
ACKNOWLEDGEMENTS…………………………….……..………iv
TABLE OF CONTENTS………………………..……….….…………v
LIST OF FIGURES AND TABLE………..……….……………..……..…vii
CHAPTER
I Introduction……………………………..……….………….………1
II System Description………..………………………………..……….4
2.1 Hardware Architecture……..……………………………….………5
2.2 Software Architecture……..………………………………..………8
III System Modeling and Problem Formulation……………..………...9
3.1 System modeling……..……………………………..……………10
3.2 Problem formulation……..…………………….…………………11
IV Mixed Decentralized Variable Structure Control………...14
4.1 Minimization of ……..………………………………..………14
4.2 Minimization of ……..………………………………..………16
4.3 Switching Control for Enhanced Robustness……..………….………18
V Experimental Results……………………………...……………….22
5.1 Position Estimate……..………………………………………..…22
5.2 Control Performance of DC Servo Motors……..……………………23
5.3 Performance of the CLMR in Intelligent Space……..……………..…24
VI Conclusions…………………………...…………………….…….25
REFERENCES…………………………………….……………………….26
APPENDIXES…………………………….……………………………….29
Appendix A…………………….…………………….…...…………29
Appendix B…………………….………………………....…………31
[1] B. Sinopoli, C. Sharp, L. Schenato, S. Schaffert and S. S. Satry, “Distributed control applications within sensor networks,” Proceedings of the IEEE, vol. 91, no. 8, pp. 1235-1246, 2003.
[2] T. Yamaguchi, E. Sato and Y. Takama, “Intelligent space and human centered robotics,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 881-889, 2003.
[3] J. H. Lee, and H. Hashimoto, “Controlling mobile robots in distributed intelligent sensor network,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 890-902, 2003.
[4] S. X. Yang, Y. Hu, P. X. Liu, X. Yuan and M. Q.-H. Meng, “A neural dynamics Based approach to real-time path planning and tracking control of a mobile robot,” IEEE proceedings Industrial Symposium on intelligent control, pp. 258-263 2003
[5] K. Briechle and U. D. Hanebeck, “Location of a mobile robot using relative bearing measurements,” IEEE Trans. Robot. & Automat., vol. 20, no. 1, pp. 36-44, 2004.
[6] S. X. Yang and Q. H. Meng, “Real-time collision-free motion planning of a mobile robot using a neural dynamics-based approach,” IEEE Trans. Neural Networks, vol. 14, no. 6, pp. 1541-1552, 2003.
[7] J. Minguez and L. Montano, “Nearness diagram (ND) navigation: collision avoidance in troublesome scenarios,” IEEE Trans. Robot. & Automat., vol. 20, no. 1, pp. 45-59, 2004.
[8] D. D. Sijak, Large-Scale Dynamic Systems: Stability and Structure. North-Holland, 1978.
[9] C. S. Tseng and B. S. Chen, “ decentralized fuzzy model reference tracking control design for nonlinear interconnected systems,” IEEE Trans. Fuzzy Syst., vol. 9, no. 6, pp. 795-809, 2001.
[10] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. Francis, “State-space solutions to standard and problems,” IEEE Trans. Automat. Contr., vol. 34, no. 8, pp. 831-847, 1989.
[11] B. S. Chen and W. Zhang, “Stochastic control with state-dependent noise,” IEEE Trans. Automat. Contr., vol. 49, no. 1, pp. 45-57, 2004.
[12] J. Chen, S. Hara, and G. Chen, “Best tracking and regulation performance under control energy constraint,” IEEE Trans. Automat. Contr., vol. 48, no. 8, pp. 1320-1336, 2003.
[13] C. L. Hwang and C. Jan, “Optimal and reinforced robustness designs of fuzzy variable structure tracking control for a piezoelectric actuator system,” IEEE Trans. Fuzzy Syst., vol. 11, no. 4, pp. 507-517, 2003.
[14] Y. Hung, W. Gao and J. C. Hung, “Variable structure control: A survey,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp.2-22, 1993.
[15] K. D. Young, V. I. Utkin and “A control Engineer’s guide to sliding mode control,” IEEE Trans. Contr. Syst. Technol., vol. 7, no. 3, pp. 328-342, 1999.
[16] K. Furuta and Y. Pan, “Variable structure control with sliding sector,” Automatica, vol. 36, no. 3, pp. 211-228, 2000.
[17] C. L. Hwang, “Robust discrete variable structure control with finite-time approach to switching surface,” IFAC, Int. J. of Automatica, vol. 38, no. 1, pp. 167-175, 2002.
[18] H. K. Khalil, Nonlinear Systems. Prentice-Hall, Inc. 2nd Edition, 1996.
[19] D. Wang and G. Xu, “Full-state tracking and internal dynamics of nonholonomic wheeled mobile robots,” IEEE/ASME Trans. Mechatron., vol. 8, no. 2, pp. 203-214, 2003.
[20] T. H. S. Li, S. J. Chang and Y. X. Chen, “Implementation of human-like driving skills by autonomous fuzzy behavior control on an FPGA-based car-like mobile robot,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 867-880, 2003.
[21] M. Vidyasagar, Controller System Synthesis – A factorization approach. MIT Press, 1995.
[22] B. A. Francis, A Course in Control Theory. Lecture Notes in Control and Information Sciences, Springer-Verlag Berlin, Heidelberg, 1987.
[23] C. L. Hwang and B. S. Chen, “Adaptive control of optimal model matching in -norm space,” IEE Proceedings-D, Control Theory and Application, vol. 135, no. 4, pp. 295-301, 1988.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊