(34.204.201.220) 您好!臺灣時間:2021/04/20 11:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王冠鈞
研究生(外文):Kuan-Chun Wang
論文名稱:以形狀記憶合金製作擺動式致動器及其控制之研究
論文名稱(外文):A Study on Design and Control of Oscillating Actuator Fabricated by Shape Memory Alloy
指導教授:陳振昇陳振昇引用關係葉隆吉葉隆吉引用關係
指導教授(外文):Zhen-Sheng ChenLong-Jyi Yeh
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:93
語文別:英文
論文頁數:60
中文關鍵詞:致動器形狀記憶合金
外文關鍵詞:actuatorSMA
相關次數:
  • 被引用被引用:8
  • 點閱點閱:159
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
形狀記憶合金(Shape Memory Alloy;SMA)中,除TiNi合金具有實用性之外,僅有Cu系合金(價格為TiNi合金的1/10);但是銅系記憶合金卻有反覆變形不穩定、延性差、疲勞強度低等致命傷,而以Cu置換Ni而得TiNiCu 3元合金可以結合兩者的優點,故以其為本研究之主要素材。
在本研究中,首先以實驗找出ψ0.6mm之Ti50Ni45Cu5合金的擬彈性變形角與荷重及驅動電流(溫度)間的特性,再提出一全新概念的雙SMA致動器,配合動態影像回授控制系統與VB控制程式,成為一實用的可控制雙SMA擺動式致動器。Pseudoelasticity angle
研究結果發現加入動態影像回授控制可以克服SMA低重現性的問題,在一般環境下(25±3℃),本研究提出的雙SMA擺動式致動器,其最大可擺動角度範圍是±12.5°,擺角控制精度為±0.5°,若擺角在±1.5°內,定位精度更可高達±0.25°。
The Shape Memory Alloys (SMA) have practicability either the TiNi alloy or series of Cu alloys (more cheap than TiNi alloy); But the memory alloy of coppers have some shortcoming such as deform unstable, low ductility, poor fatigue stength etc., if replace Ni with Cu to get the TiNiCu alloy can combine both advantage, so based on it for the main material to studied.
In this study , find out the characteristic of Ti50Ni45Cu5 alloy(ψ0.6mm) with the experiment at first, then design a couple SMA actuating devices, cooperate with the dynamic image feedbake control system and VB program, to make couple SMA actuating devices becoming practical and can control.
The result of study found that joining the dynamic image feedback control can overcome SMA low reappearing question, under the general environment (25±3℃), the oscillating angle range of the couple SMA oscillating type actuating devices is ±12.5°, the precision of angle control is ±0.5°, if oscillating angle in ±1.5°, the precision of angle control can be up to ±0.25°.
CHINESE ABSTRACT................................................Ⅰ
ENGLISH ABSTRACT................................................Ⅱ
ACKNOWLEDGEMENTS................................................Ⅲ
TABLE OF CONTENTS...............................................Ⅳ
LIST OF FIGURES.................................................Ⅶ
LIST OF TABLES...................................................X
CHAPTER
I Introduction................................................1
1.1 Motivation..............................................1
1.2 Literature Review.......................................2
II Shape Memory Alloys.....................................3
2.1 Manufacture of the Memory Alloy............................3
2.2 Organization of the Shape Memory Effect............4
2.3 TiNi Shape Memory Alloys...................................6
2.3.1 The Crystal Tranformation Memory Effect and
Mechanism Character of TiNi Alloys...............................6
2.3.2 Replace the Influence of Ni with Cu.....................11
III Experimental Equipment and planning......................15
3.1 Experimental Equipment....................................15
3.1.1 Basic Characteristic of Ti50Ni45Cu5.....................15
3.1.2 Single SMA Actuating Pole...............................16
3.1.3 Couple SMA Actuating Device............................17
3.1.4 Deformation Amount Examines System.....................18
3.1.5 Stable Electric Current System..........................22
3.1.6 Angle Calculation Program...............................27
3.1.7 Dynamic Image Feedbake Oscillating Program..............28
3.1.8 Angle Orients Program...................................30
3.2 Experimental planning.....................................31
3.2.1 SMA Joint Method........................................31
3.2.2 SMA Characteristic Measures the experiment..............31
3.2.3 Couple SMA Actuating Device Characteristic Measures....32
3.2.4 Oscillating Control Parameter tt, t1, t2 Setting.......33
3.2.5 Angle Orients Parameter A1, A2, tc Setting..............34
IV Results and Discussion....................................35
4.1 Ti50Ni45Cu5 Characteristic Curve..........................35
4.2 Couple SMA Actuating Device Characteristic................37
4.3 Couple SMA Actuating Device Characteristic Oscillating in
Limit Range.....................................................38
4.4 Couple SMA Actuating Device Angle Orients.................43
V Conclusions................................................44
REFERENCES......................................................45
[1] 舟久保熙康 ,〝形狀記憶合金〞, 復漢出版社, 1984初版.
[2] Roger G. Gilbertson, 〝MUSCLE WIRES〞, Mondo-tronics Inc. , 1992.
[3] M. Kohl, E. Just, W. Pfleging and S. Miyazaki, 〝SMA microgripper with integrated antagonism〞, Sensors and Actuators, 83, 2000, pp.208–213.
[4] M. Kohl, B. Krevet and E. Just, 〝SMA microgripper system〞, Sensors and Actuators, A97-98, 2002 , pp.646–652.
[5] Takashi Mineta , Toshiaki Mitsui , Yoshiyuki Watanabe ,Seiya Kobayashi and Youichi Haga ,〝An active guide wire with shape memory alloy bending actuator fabricated by room temperature process〞, Sensors and Actuators , A97-98 , 2002 , pp.632–637.
[6] J. Abadiea, N. Chailleta and C. Lexcellent, 〝An integrated shape memory alloy micro-actuator controlled by thermoelectric effect〞, Sensors and Actuators, A99, 2002 , pp.297–303.
[7] Ranian Mukherjee, Thomas F. Christian and Richard A. Thiel, 〝An actuation system for the control of multiple shape mempry alloy actuators〞, Sensors and Actuators, A55 , 1996 , pp.185–192.
[8] Dominiek Reynaerts and Hendrik Van Brussel ,〝Design aspects of shape memory actuators〞, Mechatronics , 8 , 1998 , pp.635-656.
[9] M.M. Ghomshei, N. Tabandeh, A. Ghazavi and F. Gordaninejad, 〝 A three dimensional shape memory alloy / elastomer actuator〞, Composites: partB, 32, 2001, pp.441-449.
[10] A. Isalgue, V. Torra, J.-L. Seguin , M. Bendahan , J.M. Amigo and V. Esteve-Cano ,〝Shape memory NiTi thin films deposited at low temperature〞, Materials Science and Engineering , A273–275 , 1999 , pp.717–721.
[11] Jan Van Humbeeck ,〝Non-medical applications of shape memory alloys〞, Materials Science and Engineering , A273–275 , 1999 , pp.134–148.
[12] Eiji Makino , Takashi Mitsuya and Takayuki Shibata ,〝Fabrication of TiNi shape memory micropump〞, Sensors and Actuators , A88 , 2001 , pp.256–262.
[13] M. Kohl, D. Dittmann, E. Quandt and B. Winzek, 〝Thin film shape memory microvalves with adjustable operation temperature〞Sensors and Actuators, 83 , 2000 , pp.214–219.
[14] S.M. TAN, V.H. NO and S. MIYAZZKI, 〝Ti-CONTENT AND ANNEALING TEMPERATURE DEPENDENCE OF DFFORMATION CHARACTERISTICS OF TixNi(92-x)Cu8 SHARE MEMORY ALLOYS〞, Acta mater , Vol46 , No8 , 1998 , pp.2729-2740.
[15] P. Shia, D.Z. Yanga, H.M. Shenb and F.X. Chena, 〝Effects of aging on martensitic transformation of Ti50Ni25Cu25 shape memory alloy〞, Materials and Design, 21 , 2000 , pp.521-524.
[16] Chia-Tien Liu ,〝Stress-Assisted Phase Transformations in TiNiCu Shape Memory Alloys〞, Master Thesis Materials Engineering Department Tatung Institute of Technology, 1992
[17] T. W. Duerig "Engineering Aspects of Shape Memory Alloys〞, Butterworth -Heinemann LTD, 1990
[18] NanoMuscle Inc., http://www.nanomuscle.com
[19] 施純協、郭盈顯 ,〝Visula Basic與電腦I/O控制實務〞, 知行文化事業股份有限公司, 明國91年2月初板.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔