(100.26.179.251) 您好!臺灣時間:2021/04/21 22:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:施瑩鶯
研究生(外文):Ying-Ying Shih
論文名稱:全色態與多光譜影像融合技術分析
論文名稱(外文):Analysis of Panchromatic and Multi-spectrum Image Fusion
指導教授:許超雲許超雲引用關係
指導教授(外文):Hsu Chau-Yun
學位類別:碩士
校院名稱:大同大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:93
語文別:英文
論文頁數:65
中文關鍵詞:影像融合
外文關鍵詞:Image Fusion
相關次數:
  • 被引用被引用:3
  • 點閱點閱:717
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:2
摘 要
商用高解析度光學及衛星影像獲得日漸容易且運用廣泛,無論科學研究、農業植被分析、天然災害防治、都市計劃土地利用、軍事監測用途等領域均有強烈需求,使得衛星影像產量越來越大,影像資訊交換也越來越頻繁。衛星影像處理技術儼然成為當前極為熱門的新話題,世界各一流學術及國家級研究機構均積極研發,各國廠商亦競相參與,創造了許多影像的新技術,也帶動了無限的商機,但衛星影像經由衛星拍攝後,需要經過一連串的處理,如:幅射校正、地理校正、高低解析度影像融合、影像鑲嵌、材質分析、特徵擷取及目標物偵測等重要的步驟,才能讓一張張影像產品得以廣泛應用。
本文主要是研究目前常見的各種高低解析度影像融合技術,如:亮度-色調-飽和度(Intensity-Hue-Saturation; HSI)融合法,主成分分析法(Principal Component Analysis; PCA), LP(Laplacian Pyramid ),GP(Gaussian Pyramid)及 小波轉換法(Wavelet Transform; WT)等,為目前在遙測影像融合時所廣泛使用之方法,並將其數學理論及演算法作一研討。此外,運用上述技術,以模擬影像實作的方式評估各種技術長短。
Astract
Commercial high resolution optizal and satllite image can get easier in present time, the applications are also become widly, included science research, argritecyure planting analysis, natural disaster preventing and controlling, urban design, land planning, military monitoring, etc. It makes amount of satllite image increased fast, the image exchange is also frequently the before. The technologe of satllite image procedure now is becoming a popular subject, acdemics and researching facilities of many countries are going to research and develop these techniques. It also increased many business orpotunities.
However, the image needs many after procedure after taken via satllite, for example, the calibration of radiation, geographical calibration, combinations of higher and lower resolution, image mouting, material analysis, charactoristics pick up and objects detecting, etc.These procedures could make images useful in many applications.
This article is talking about many combinations of higher and lower resolution techniques in present time, like combination of (Intensity-Hue-Saturation; HSI), (Principal Component Analysis; PCA), LP(Laplacian Pyramid) , GP(Gaussian Pyramid)and (Wavelet Transform; WT), They are popular methods of remote image combination. We also discussion the relative mathematic operation and methods. Further, based on these techniques, image simulation practices can also evaluating the merits and weak points of each technique.
CONTENTS
ENGLISH ABSTRACT 1
CHINESE ABSTRACT iii
ACKNOWLEDGEMENTS iv
TABLES OF CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES x
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Research Motivation 4
1.3 Organization 5
CHAPTER 2 FUNDAMENTAL OF IMAGE FUSION 6
2.1 Introduce to Fusion 6
2.1.1 Definition of generic image fusion 6
2.1.2 Preprocess of image fusion 7
2.2 Interpolation 8
2.2.1 Nearest Interpolation 8
2.2.2 Linear Interpolation 9
2.2.3 Bicubic convolution Interpolation 10
2.3 Wavelet Transform 11
2.3.1 CWT 15
2.3.2 DWT 15
2.3. Color Model 16
2.3.1 RGB Format 16
2.3.2 HSI Format 17
2.4 Pyramid Transform 19
2.4.1 Gaussian Pyramid (GP) 19
2.4.2 Laplacian Pyramid (LP) 21
2.5 Principal components analysis 24
CHAPTER 3 IMAGE FUSION METHODOLOGY 28
3.1 Color space Conversion 28
3.1.1 RGB-to-HSI Conversion 28
3.1.2 Steps of HSI image fusion 34
3.2 Pyramid Transformation Image Fusion method 36
3.3 Principal components analysis fusion method 39
3.3.1 PCA fusion 40
CHAPTER 4 EXPERIMENTAL RESULT 41
4.1 Simulation Model 41
4.2 Experimental Results 43
4.2.1 Comparison of different HSI approaches 43
4.2.2 PT Approach Experimental Result 44
4.2.3 PCA Approach Experimental Result 47
4.3 RMSE OF Fusion Approaches Experimental Results 48
CHAPTER 5 CONCLUSION 52
Reference: 54
Reference:
[1] LEHIGH University, Investigations of Image Fusion, 2003, http://www.eecs.lehigh.edu/SPCRL/IF/image_fusion.htm#if_introduction
[2] D.L. Hartmann, “Wavelets,” Department of Atmospheric Sciences Box 351640, University of Washington, pp. 204-221,2002, http://www.atmos.washington.edu/~dennis/552_Notes_9.pdf
[3] Liu Jian Guo and J. McM. Moore, “Pixel block intensity modulation: adding spatial detail to TM band 6 thermal imagery, ” INT. J. remote Sensing , vol. 19, no.13,pp.2477-2491. 1998.
[4] Jiabin Sun, Jilin Li and Jun li, “ Multi-source remote sensing image fusion, ” Journal of Remote Sensing, vol. 2, no.1, pp. 323-328, Feb. 1998.
[5] R. A. SchowenGerdt, Remote Sensing models and methods for image processing, Academic Press, 2nd edition , July 1997.
[6] W. Lucien, “Some terms of reference in data fusion,” IEEE Transactions on Geosciences and Remote Sensing, vol.37, no.3, pp.1190-1193, May 1999.
[7] A. Garzelli, “Wavelet-Based Fusion Of Optical And Sar Image Data Over Urban Area, ” in ISPRS - Commission III Symposium. Graz, Austria, vol.B, pp.59-62. Sept. 9-13, 2002.
[8] S. Sanjeevi, K. Vani, and K. Lakshmi, “Comparison of Conventional and Wavelet Transform Techniques for Fusion of IRS-1C LISS-III and PAN Images,” in the 22nd Asian Conference on Remote Sensing, Singapore, vol. 1, pp.140-145, Nov. 5-9, 2001.
[9] A. Boggess and F. J. Narcowich, The First Course in Wavelets with Fourier Analysis, Prentice Hall, 2001.
[10] D. Yan and Z. Zhao, “Wavelet Decomposition Applied to Image Fusion,” in Proceedings. International Conferences of Info-tech and Info-net (ICII 2001) , Beijing, China, vol.1, pp. 291-295, 29 Oct.-1 Nov. 2001.
[11] R.C. Gonzalez and R.E. Woods, Digital Image Processing, Addison-Wesley , 1992.
[12] Adrian Ford, Alan Roberts, Colour Space Conversions, Aug.11, 1998,
http://www.poynton.com/PDFs/coloureq.pdf
[13] M. Sima, S. Vassiliadis, S. Cotofana and J.T.J. Eijndhoven, “Color Space Conversion for MPEG decoding on FPGA-augmented TriMedia Processor,” in Proc. IEEE International Conference (Application-Specific Systems, Architectures, and Processors, 2003), vol .26, pp.241-250, June 2003.
[14] R. S. Ledley, M. Buas, and T. J.Golab, Fundamentals of true-color image processing, Proc.Intl. Conf. on Pattern Recognition , pp.791-795, Jan. 1990.
[15] Peter J. Burt and Edward H. Adelson, “The Laplacian Pyramid as a Compact Image Code, ”IEEE Transactions on Communications, vol. 31, no.4, pp.532-540, April 1983.
[16]P.S.Chavez , Jr,s.c.Sides, and J.A.Anderson, “Comparison of three difference methods to merge multiresolution and mutispectral data:Landsat TM and SPOT panchromatic, ” Photogrammetric Engineering and Remote Sensing,vol.57,no.3,pp.295-303,1991.
[17]P.S. Chavez,and A.Y.Kwarteng, “Extracting spectral contrast in Landsat thematic mapper image data usung selective principal component analysis, ” Photogrammetric Engineering and Remote Sensing,vol.55,no.3,pp.339-348,1989.
[18] J. Sadowsky, “Investigation of Signal Characteristics Using the Continuous Wavelet Transform, ” Johns Hopkins APL Technical Digest, vol.17, no.3, pp.258, Feb.1996.
[19] K. R. Castleman, Digital Image Processing, Prentice Hall International editions, pp.550-553, 2000.
[20] J.G. Liu, “Evaluation of Landsat-7 ETM+ Panchromatic Band for Image Fusion with Multispectral Bands, ” Natural Resources Research, vol. 9, no.4, pp.269-276, Sept 2000.
[21] B.Aiazzi, L. Alparone, S. Baronti, I. Pippi, and M. Selva, “Generalised Laplacian Pyramid- Based Fusion of MS+P Image data with spectral distortion minimization , ” in proc. ISPRS - Commission III Symposium. Graz, Austria, vol.B, pp.3-6, Sept. 9-13, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔