跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/13 09:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡佩宜
研究生(外文):Pei-Yi Tsai
論文名稱:砂眼披衣菌第三型分泌蛋白免疫抗原性的研究
論文名稱(外文):Immunogenecity studies of type Ⅲ secretory system proteins in Chlamydia trachomatis
指導教授:李淑英李淑英引用關係吳榮燦
指導教授(外文):Shu-Ying LiRong-Tsun Wu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物藥學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:80
中文關鍵詞:砂眼披衣菌第三型分泌蛋白抗原檢體
外文關鍵詞:IncAELISAImmunoblotting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
砂眼披衣菌是一種絕對細胞內寄生的人類病原菌,主要感染眼部和生殖道上皮細胞,造成許多不同的病症。在所有性傳染病中,砂眼披衣菌感染已超越淋病和梅毒,成為最主要的細菌性性傳染病,在全世界各地廣泛流傳,以東南亞地區感染的情形最為嚴重,目前還沒有砂眼披衣菌的疫苗出現。由於多數的病患都沒有症狀,因此流行病學篩檢與公共衛生教育是非常重要的工作。本論文研究砂眼披衣菌專一的第三型分泌蛋白IncA,是否可以在三種臨床檢體中檢測出抗原或抗體反應,以評估IncA抗原及其抗體在砂眼披衣菌血清學檢驗的臨床應用性。在血清、尿液及子宮頸拭子三種檢體中,利用ELISA及Immunoblotting檢測發現,血清可引發以IgA為主的IncA抗體反應,尿液及子宮頸拭子也可以偵測到50%及70%的抗體反應,表示IncA抗體檢測可以用於輔助砂眼披衣菌的檢測,尤其適合於子宮頸拭子檢體的檢測,因為生殖道上皮是砂眼披衣菌主要感染部位,會引發較強的抗體反應。在IncA抗原檢測的部分,23%患者尿液中可以偵測到抗原存在,而子宮頸拭子完全沒有,因此抗原檢測適合於應用於尿液檢體的檢測,推測可能是生殖道酸性的環境,使蛋白質類的抗原不容易存在,而尿液接近中性,容易檢測出抗原存在。整體來說,尿液及子宮頸拭子是比血清更適合於砂眼披衣菌檢測的檢體,IncA蛋白的抗原及抗體檢測,具有其應用上的價值,若能進一步評估靈敏度(sensitivity)及專一性(specificity),並與市售的試劑互相比較,可發展出具有臨床應用價值的砂眼披衣菌免疫學檢測方式。
Chlamydia trachomatis is an obligate intracellular pathogen of humans, primarily causing infections in ocular and urogenital epithelial cells and resulting in various symptoms. Among all sexually transmitted diseases (STD), C. trachomatis has surpassed Gonorrhea and Syphilis to become the most important STD worldwide, especially in Southeast Asia. Up to this point, there is no vaccine against C. trachomatis. Furthermore, most patients remain asymptomatic after infection; therefore, both epidemiological screening and public health education are pivotal for prevention and control of C. trachomatis infections. The aim of this study is to develop immunological methods for the detection of the antigen or antibody of a C. trachomatis specific type III secretory protein IncA in 3 kinds of clinical specimens and to evaluate the clinical applicability of the IncA-based immunological detection methods. In serum sample, IgA-based antibody response to IncA was detected. In urine and genital swab samples, 50% and 70% antibody response was also detected, respectively. This indicates that IncA antibody detection can serve as a useful supplement of the existing detection methods, especially for genital swab samples. This may be owing to the fact that the urogenital epithelium is the primary site of infection for C. trachomatis, and thus stronger antibody response can be induced for genital swab samples. With respect to IncA antigen detection, antigen was detected in urine samples of 23% patient while in genital swab samples, none was detected. Therefore, urine samples are superior to genital swab samples for antigen detection. It may be inferred that the acidic environment of the genital tract denatures protein antigen; on the other hand, the pH value of urine is approximately neutral, which is more suitable for antigen. As a whole, urine and genital swab samples are more suitable than serum samples for C. trachomatis detection. In conclusion, the potential applicability of IncA protein in the detection of C. trachomatis antigen and antibody was found. Further studies are needed, such as evaluation of the sensitivity and specificity of the methods and comparison with commercial diagnostic kits to validate the clinical applicability of IncA protein-based immunological detection methods inr the diagnosis of C. trachomatis.
Alzhanov,D., Barnes,J., Hruby,D.E., and Rockey,D.D. (2004). Chlamydial development is blocked in host cells transfected with Chlamydophila caviae incA. BMC. Microbiol. 4, 24.
Anderson,D.M. and Schneewind,O. (1999). Type III machines of Gram-negative pathogens: injecting virulence factors into host cells and more. Curr. Opin. Microbiol. 2, 18-24.
Anttila,T., Saikku,P., Koskela,P., Bloigu,A., Dillner,J., Ikaheimo,I., Jellum,E., Lehtinen,M., Lenner,P., Hakulinen,T., Narvanen,A., Pukkala,E., Thoresen,S., Youngman,L., and Paavonen,J. (2001). Serotypes of Chlamydia trachomatis and risk for development of cervical squamous cell carcinoma. JAMA 285, 47-51.
Bannantine,J.P., Stamm,W.E., Suchland,R.J., and Rockey,D.D. (1998). Chlamydia trachomatis IncA is localized to the inclusion membrane and is recognized by antisera from infected humans and primates. Infect. Immun. 66, 6017-6021.
Bas,S., Muzzin,P., Ninet,B., Bornand,J.E., Scieux,C., and Vischer,T.L. (2001). Chlamydial serology: comparative diagnostic value of Immunoblotting, microimmunofluorescence test, and immunoassays using different recombinant proteins as antigens. J. Clin. Microbiol. 39, 1368-1377.
Batteiger,B.E., Rank,R.G., Bavoil,P.M., and Soderberg,L.S. (1993). Partial protection against genital reinfection by immunization of guinea-pigs with isolated outer-membrane proteins of the chlamydial agent of guinea-pig inclusion conjunctivitis. J. Gen. Microbiol. 139 ( Pt 12), 2965-2972.
Bavoil,P.M. and Hsia,R.C. (1998). Type III secretion in Chlamydia: a case of deja vu? Mol. Microbiol. 28, 860-862.
Belland,R.J., Zhong,G., Crane,D.D., Hogan,D., Sturdevant,D., Sharma,J., Beatty,W.L., and Caldwell,H.D. (2003). Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc. Natl. Acad. Sci. U. S. A 100, 8478-8483.
Betsou,F., Sueur,J.M., and Orfila,J. (1999). Serological investigation of Chlamydia trachomatis heat shock protein 10. Infect. Immun. 67, 5243-5246.
Brown,W.J., Skeiky,Y.A., Probst,P., and Rockey,D.D. (2002). Chlamydial antigens colocalize within IncA-laden fibers extending from the inclusion membrane into the host cytosol. Infect. Immun. 70, 5860-5864.
Brunham,R.C. and Rey-Ladino,J. (2005). Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat. Rev. Immunol. 5, 149-161.
Brunham,R.C., Zhang,D.J., Yang,X., and McClarty,G.M. (2000). The potential for vaccine development against chlamydial infection and disease. J. Infect. Dis. 181 Suppl 3, S538-S543.
Caldwell,H.D., Kromhout,J., and Schachter,J. (1981). Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect. Immun. 31, 1161-1176.
Cevenini,R., Rumpianesi,F., Sambri,V., and La Placa,M. (1986). Antigenic specificity of serological response in Chlamydia trachomatis urethritis detected by Immunoblotting. J. Clin. Pathol. 39, 325-327.
Delevoye,C., Nilges,M., Dautry-Varsat,A., and Subtil,A. (2004). Conservation of the biochemical properties of IncA from chlamydia trachomatis and C. caviae : oligomerization of IncA mediates interaction between facing membranes. J. Biol. Chem.
Eckert,L.O., Suchland,R.J., Hawes,S.E., and Stamm,W.E. (2000). Quantitative Chlamydia trachomatis cultures: correlation of chlamydial inclusion-forming units with serovar, age, sex, and race. J. Infect. Dis. 182, 540-544.
Eko,F.O., He,Q., Brown,T., McMillan,L., Ifere,G.O., Ananaba,G.A., Lyn,D., Lubitz,W., Kellar,K.L., Black,C.M., and Igietseme,J.U. (2004). A novel recombinant multisubunit vaccine against Chlamydia. J. Immunol. 173, 3375-3382.
Eko,F.O., Lubitz,W., McMillan,L., Ramey,K., Moore,T.T., Ananaba,G.A., Lyn,D., Black,C.M., and Igietseme,J.U. (2003). Recombinant Vibrio cholerae ghosts as a delivery vehicle for vaccinating against Chlamydia trachomatis. Vaccine 21, 1694-1703.
Fan,T., Lu,H., Hu,H., Shi,L., McClarty,G.A., Nance,D.M., Greenberg,A.H., and Zhong,G. (1998). Inhibition of apoptosis in chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J. Exp. Med. 187, 487-496.
Fields,K.A., Fischer,E., and Hackstadt,T. (2002). Inhibition of fusion of Chlamydia trachomatis inclusions at 32 degrees C correlates with restricted export of IncA. Infect. Immun. 70, 3816-3823.
Fields,K.A., Mead,D.J., Dooley,C.A., and Hackstadt,T. (2003). Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development. Mol. Microbiol. 48, 671-683.
Fling,S.P., Sutherland,R.A., Steele,L.N., Hess,B., D'Orazio,S.E., Maisonneuve,J., Lampe,M.F., Probst,P., and Starnbach,M.N. (2001). CD8+ T cells recognize an inclusion membrane-associated protein from the vacuolar pathogen Chlamydia trachomatis. Proc. Natl. Acad. Sci. U. S. A 98, 1160-1165.
Grandi,G. (2003). Rational antibacterial vaccine design through genomic technologies. Int. J. Parasitol. 33, 615-620.
Grayston,J.T., Woodlridge,R.L., Wang,S.P., Yen,C.H., Yang,C.Y., Cheng,K.H., and Chang,I.H. (1963). Field studies of protection from infection by experimental trachoma virus vaccine in preschool-aged children on Taiwan. Proc. Soc. Exp. Biol. Med. 112, 589-595.
Hackstadt,T., Fischer,E.R., Scidmore,M.A., Rockey,D.D., and Heinzen,R.A. (1997). Origins and functions of the chlamydial inclusion. Trends Microbiol. 5, 288-293.
Hackstadt,T., Scidmore-Carlson,M.A., Shaw,E.I., and Fischer,E.R. (1999). The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion. Cell Microbiol. 1, 119-130.
Hsia,R.C., Pannekoek,Y., Ingerowski,E., and Bavoil,P.M. (1997). Type III secretion genes identify a putative virulence locus of Chlamydia. Mol. Microbiol. 25, 351-359.
Hueck,C.J. (1998). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379-433.
Igietseme,J.U., Ananaba,G.A., Bolier,J., Bowers,S., Moore,T., Belay,T., Eko,F.O., Lyn,D., and Black,C.M. (2000). Suppression of endogenous IL-10 gene expression in dendritic cells enhances antigen presentation for specific Th1 induction: potential for cellular vaccine development. J. Immunol. 164, 4212-4219.
Igietseme,J.U., Eko,F.O., He,Q., Bandea,C., and Black,C.M. (2004). Developing effective delivery systems for Chlamydia vaccines. Curr. Opin. Mol. Ther. 6, 182-194.
Jager,D., Stockert,E., Karbach,J., Herrlinger,K., Atmaca,A., Arand,M., Chen,Y.T., Gnjatic,S., Old,L.J., Knuth,A., and Jager,E. (2002). Urine antibody against human cancer antigen NY-ESO-1. Cancer Immun. 2, 10.
Johansson,M. and Lycke,N.Y. (2003). Immunology of the human genital tract. Curr. Opin. Infect. Dis. 16, 43-49.
Koehler,J.E., Birkelund,S., and Stephens,R.S. (1992). Overexpression and surface localization of the Chlamydia trachomatis major outer membrane protein in Escherichia coli. Mol. Microbiol. 6, 1087-1094.
Kohl,K.S., Markowitz,L.E., and Koumans,E.H. (2003). Developments in the screening for Chlamydia trachomatis: a review. Obstet. Gynecol. Clin. North Am. 30, 637-658.
Lampe,M.F., Wilson,C.B., Bevan,M.J., and Starnbach,M.N. (1998). Gamma interferon production by cytotoxic T lymphocytes is required for resolution of Chlamydia trachomatis infection. Infect. Immun. 66, 5457-5461.
Lenart,J., Andersen,A.A., and Rockey,D.D. (2001). Growth and development of tetracycline-resistant Chlamydia suis. Antimicrob. Agents Chemother. 45, 2198-2203.
Longbottom,D. (2003). Chlamydial vaccine development. J. Med. Microbiol. 52, 537-540.
Longbottom,D., Russell,M., Dunbar,S.M., Jones,G.E., and Herring,A.J. (1998). Molecular cloning and characterization of the genes coding for the highly immunogenic cluster of 90-kilodalton envelope proteins from the Chlamydia psittaci subtype that causes abortion in sheep. Infect. Immun. 66, 1317-1324.
Lysen,M., Osterlund,A., Rubin,C.J., Persson,T., Persson,I., and Herrmann,B. (2004). Characterization of ompA genotypes by sequence analysis of DNA from all detected cases of Chlamydia trachomatis infections during 1 year of contact tracing in a Swedish County. J. Clin. Microbiol. 42, 1641-1647.
Martin,D.H., Mroczkowski,T.F., Dalu,Z.A., McCarty,J., Jones,R.B., Hopkins,S.J., and Johnson,R.B. (1992). A controlled trial of a single dose of azithromycin for the treatment of chlamydial urethritis and cervicitis. The Azithromycin for Chlamydial Infections Study Group. N. Engl. J. Med. 327, 921-925.
Mbizvo,E.M., Msuya,S.E., Stray-Pedersen,B., Sundby,J., Chirenje,M.Z., and Hussain,A. (2001). HIV seroprevalence and its associations with the other reproductive tract infections in asymptomatic women in Harare, Zimbabwe. Int. J. STD AIDS 12, 524-531.
Mestecky,J. and Fultz,P.N. (1999). Mucosal immune system of the human genital tract. J. Infect. Dis. 179 Suppl 3, S470-S474.
Mestecky,J., Moldoveanu,Z., and Russell,M.W. (2005). Immunologic uniqueness of the genital tract: challenge for vaccine development. Am. J. Reprod. Immunol. 53, 208-214.
Miller,W.C., Ford,C.A., Morris,M., Handcock,M.S., Schmitz,J.L., Hobbs,M.M., Cohen,M.S., Harris,K.M., and Udry,J.R. (2004). Prevalence of chlamydial and gonococcal infections among young adults in the United States. JAMA 291, 2229-2236.
Moore,T., Ekworomadu,C.O., Eko,F.O., MacMillan,L., Ramey,K., Ananaba,G.A., Patrickson,J.W., Nagappan,P.R., Lyn,D., Black,C.M., and Igietseme,J.U. (2003). Fc receptor-mediated antibody regulation of T cell immunity against intracellular pathogens. J. Infect. Dis. 188, 617-624.
Morre,S.A., Rozendaal,L., van Valkengoed,I.G., Boeke,A.J., Voorst Vader,P.C., Schirm,J., de Blok,S., van Den Hoek,J.A., van Doornum,G.J., Meijer,C.J., and van Den Brule,A.J. (2000). Urogenital Chlamydia trachomatis serovars in men and women with a symptomatic or asymptomatic infection: an association with clinical manifestations? J. Clin. Microbiol. 38, 2292-2296.
Moulder,J.W. (1991). Interaction of chlamydiae and host cells in vitro. Microbiol. Rev. 55, 143-190.
Murdin,A.D., Gellin,B., Brunham,R.C., Campbell,L.A., Christiansen,G., Deal,C.D., Jenson,H.B., Metcalf,B., Sankaran,B., Stephens,R.S., and Wilfert,C. (2000). Collaborative multidisciplinary workshop report: progress toward a Chlamydia pneumoniae vaccine. J. Infect. Dis. 181 Suppl 3, S552-S557.
Newhall,W.J., Batteiger,B., and Jones,R.B. (1982). Analysis of the human serological response to proteins of Chlamydia trachomatis. Infect. Immun. 38, 1181-1189.
Okada,C., Kura,F., Wada,A., Inagawa,H., Lee,G.H., and Matsushita,H. (2002). Cross-reactivity and sensitivity of two Legionella urinary antigen kits, Biotest EIA and Binax NOW, to extracted antigens from various serogroups of L. pneumophila and other Legionella species. Microbiol. Immunol. 46, 51-54.
Oriel,J.D., Ridgway,G.L., and Tchamouroff,S. (1977). Comparison of erythromycin stearate and oxytetracycline in the treatment of non-gonococcal urethritis: their efficacy against Chlamydia trachomatis. Scott. Med. J. 22, 375-379.
Parish,W.L., Laumann,E.O., Cohen,M.S., Pan,S., Zheng,H., Hoffman,I., Wang,T., and Ng,K.H. (2003). Population-based study of chlamydial infection in China: a hidden epidemic. JAMA 289, 1265-1273.
Peipert,J.F. (2003). Clinical practice. Genital chlamydial infections. N. Engl. J. Med. 349, 2424-2430.
Perry,L.L., Feilzer,K., and Caldwell,H.D. (1997). Immunity to Chlamydia trachomatis is mediated by T helper 1 cells through IFN-gamma-dependent and -independent pathways. J. Immunol. 158, 3344-3352.
Rasmussen,S.J., Eckmann,L., Quayle,A.J., Shen,L., Zhang,Y.X., Anderson,D.J., Fierer,J., Stephens,R.S., and Kagnoff,M.F. (1997). Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis. J. Clin. Invest 99, 77-87.
Rockey,D.D., Lenart,J., and Stephens,R.S. (2000). Genome sequencing and our understanding of chlamydiae. Infect. Immun. 68, 5473-5479.
Rockey,D.D., Scidmore,M.A., Bannantine,J.P., and Brown,W.J. (2002). Proteins in the chlamydial inclusion membrane. Microbes. Infect. 4, 333-340.
Samra,Z., Rosenberg,S., Soffer,Y., and Dan,M. (2001). In vitro susceptibility of recent clinical isolates of Chlamydia trachomatis to macrolides and tetracyclines. Diagn. Microbiol. Infect. Dis. 39, 177-179.
Schachter,J. (1978). Chlamydial infections (first of three parts). N. Engl. J. Med. 298, 428-435.
Scidmore,M.A. and Hackstadt,T. (2001). Mammalian 14-3-3beta associates with the Chlamydia trachomatis inclusion membrane via its interaction with IncG. Mol. Microbiol. 39, 1638-1650.
Scidmore-Carlson,M.A., Shaw,E.I., Dooley,C.A., Fischer,E.R., and Hackstadt,T. (1999). Identification and characterization of a Chlamydia trachomatis early operon encoding four novel inclusion membrane proteins. Mol. Microbiol. 33, 753-765.
Shaw,E.I., Dooley,C.A., Fischer,E.R., Scidmore,M.A., Fields,K.A., and Hackstadt,T. (2000). Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle. Mol. Microbiol. 37, 913-925.
Shimizu,T., Yarita,Y., Haruna,H., Kaneko,K., Yamashiro,Y., Gupta,R., Anazawa,A., and Suzuki,K. (2003). Urine-based enzyme-linked immunosorbent assay for the detection of Helicobacter pylori antibodies in children. J. Paediatr. Child Health 39, 606-610.
Smith,J.S., Munoz,N., Herrero,R., Eluf-Neto,J., Ngelangel,C., Franceschi,S., Bosch,F.X., Walboomers,J.M., and Peeling,R.W. (2002). Evidence for Chlamydia trachomatis as a human papillomavirus cofactor in the etiology of invasive cervical cancer in Brazil and the Philippines. J. Infect. Dis. 185, 324-331.
Somani,J., Bhullar,V.B., Workowski,K.A., Farshy,C.E., and Black,C.M. (2000). Multiple drug-resistant Chlamydia trachomatis associated with clinical treatment failure. J. Infect. Dis. 181, 1421-1427.
Starnbach,M.N., Loomis,W.P., Ovendale,P., Regan,D., Hess,B., Alderson,M.R., and Fling,S.P. (2003). An Inclusion Membrane Protein from Chlamydia trachomatis Enters the MHC Class I Pathway and Stimulates a CD8(+) T Cell Response. J. Immunol. 171, 4742-4749.
Stuart,E.S., Tirrell,S.M., and MacDonald,A.B. (1987). Characterization of an antigen secreted by Chlamydia-infected cell culture. Immunology 61, 527-533.
Su,H., Feilzer,K., Caldwell,H.D., and Morrison,R.P. (1997). Chlamydia trachomatis genital tract infection of antibody-deficient gene knockout mice. Infect. Immun. 65, 1993-1999.
Subtil,A., Blocker,A., and Dautry-Varsat,A. (2000). Type III secretion system in Chlamydia species: identified members and candidates. Microbes. Infect. 2, 367-369.
Subtil,A., Parsot,C., and Dautry-Varsat,A. (2001). Secretion of predicted Inc proteins of Chlamydia pneumoniae by a heterologous type III machinery. Mol. Microbiol. 39, 792-800.
Suchland,R.J., Eckert,L.O., Hawes,S.E., and Stamm,W.E. (2003). Longitudinal assessment of infecting serovars of Chlamydia trachomatis in Seattle public health clinics: 1988-1996. Sex Transm. Dis. 30, 357-361.
Suchland,R.J., Rockey,D.D., Bannantine,J.P., and Stamm,W.E. (2000). Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane. Infect. Immun. 68, 360-367.
Taylor,H.R. and Prendergast,R.A. (1987). Attempted oral immunization with chlamydial lipopolysaccharide subunit vaccine. Invest Ophthalmol. Vis. Sci. 28, 1722-1726.
Taylor,H.R., Whittum-Hudson,J., Schachter,J., Caldwell,H.D., and Prendergast,R.A. (1988). Oral immunization with chlamydial major outer membrane protein (MOMP). Invest Ophthalmol. Vis. Sci. 29, 1847-1853.
van Duynhoven,Y.T., Ossewaarde,J.M., Derksen-Nawrocki,R.P., van der Meijden,W.I., and van de Laar,M.J. (1998). Chlamydia trachomatis genotypes: correlation with clinical manifestations of infection and patients' characteristics. Clin. Infect. Dis. 26, 314-322.
Whelan,J. (2002). Potential new vaccine against chlamydia. Drug Discov. Today 7, 843-844.
Woolridge,R.L., Grayston,J.T., Chang,I.H., Yang,C.Y., and Cheng,K.H. (1967). Long-term follow-up of the initial (1959-1960) trachoma vaccine field trial on Taiwan. Am. J. Ophthalmol. 63, Suppl-5.
Wu,I.C., Ke,H.L., Lo,Y.C., Yang,Y.C., Chuang,C.H., Yu,F.J., Lee,Y.C., Jan,C.M., Wang,W.M., and Wu,D.C. (2003). Evaluation of a newly developed office-based stool test for detecting Helicobacter pylori: an extensive pilot study. Hepatogastroenterology 50, 1761-1765.
Zhong,G., Fan,P., Ji,H., Dong,F., and Huang,Y. (2001). Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors. J. Exp. Med. 193, 935-942.
Zhu,C., Tian,H., Lu,L., Li,Y., Feng,Z., Ma,L., and Guan,X. (2000). A study on producing monoclonal antibody with one diagnostic marker screened electrophoretically from the urine of individuals infected with Schistosoma japonicum. Diagn. Microbiol. Infect. Dis. 38, 237-241.

World Health Organization. (2001). Global Prevalence and Incidence of Selected Curable Sexually Transmitted Diseases: Chlamydia estimates. World Health Organization, Geneva, Switzerland.
張銘芳 (1988) 婦產科門診病人砂眼披衣菌感染之流行病學研究 陽明醫學院公衛所碩士論文
楊順晴 (1999) 婦女感染生殖道披衣菌之流行病學調查:以尿液為檢體篩檢披衣菌感染可行性之評估及婦女感染披衣菌危險因子之分析 國防醫學院公衛所碩士論文
陳明陽.王德予.黃瑞琮和陳連城 (2002) 台灣某一社區醫院對披衣菌感染的選擇性篩檢結果 台灣泌尿醫誌13, 108-113
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top