跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/26 20:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾怡瑾
研究生(外文):Lily Yi-Chin Tseng
論文名稱:正子斷層掃描之部分體積修正
論文名稱(外文):Partial Volume Correction in Positron Emission Tomography
指導教授:陳志成陳志成引用關係
指導教授(外文):Jyh-Cheng Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:放射醫學科學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:97
中文關鍵詞:部分體積效應正子斷層掃描部分體積效應校正影像分割影像校準
外文關鍵詞:partial volume effectpositron emission tomographypartial volume correctionimage segmentationimage registration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
由於正子斷層掃描本身解析度而造成之部分體積效應極易影響在局部活性測量時的錯估,因而造成功能性參數的誤差。部分體積效應包含了下列兩項特性:首先是單一像素中包含了多重組織,造成此像素值乃為其多重組織活性之總和,而此特性主要是由於低於解析度的異質性所造成,故可由高解析度的造影資訊輔助以改善此現象。其次是溢出效應(spillover effect),此效應乃是因儀器之點散射函式(point spread function)使鄰近組織因其吸收速率相異造成之訊號污染,故可藉由測量準確的點散射函式修正回來。在本次實驗中,主是提出一個新的方法,製造一個對於影像活性對比度及隨幾事件比例(random ratio)而變的特殊點散射函式數學模型,使得MR Based 的部分體積效應的修正的表現更好,特別是對於比較難修正的小物體和低對比度。
本實驗中乃是利用七個小球放在一個大圓柱體假體裡來與兩個傳統的部分體積效應修正方法做比較。而論文中主要用了四個假體和一個臨床病例。還有我們也有做我們這個方法的可能性誤差和誤差對於我們修正的方法之影響。
關鍵詞:
Abstract

Partial volume effect in Positron Emission Tomography (PET) leads to wrong estimation of regional concentration and, therefore, can result in errors in functional parametric images. Partial volume effect is the sum of two properties. The first property is tissue fraction overlaying a single pixel that is mainly caused by sub-resolution heterogeneity. Correction for this property can be solved by using high resolution anatomical images. The second property is signal contamination from surrounding tissue with different tracer uptake and kinetics, also called spill-over effect which is caused by the point spread function. With good characterizing of point spread function, this effect can be rectified. We developed an Apparent-Contrast (AC) Random –Ratio (RR) dependent point spread function for MR Based Partial Volume Correction (PVC).
We used seven spheres in a body-size phantom to compare the performance with MR Based PVC and a model optimization approach developed by Chen, CH. We used four different phantoms and a clinical study to test our method with other methods. A validation of simulated errors were done to show how each error would effect the method.
1. DeGrado, T. R. et al. Estimation of myocardial blood flow for longitudinal studies with 13N- labeled ammonia and positron emission tomography. J. Nucl. Cardiol. 3, 494-507 (1996).
2. Endo, M. et al. Noninvasive quantification of regional myocardial blood flow and ammonia extraction fraction using nitrogen-13 ammonia and positron emission tomography. Ann. Nucl. Med. 1, 1-6 (1987).
3. Herrero, P., Markham, J. & Bergmann, S. R. Quantitation of myocardial blood flow with H2 15O and positron emission tomography: assessment and error analysis of a mathematical approach. J. Comput. Assist. Tomogr. 13, 862-873 (1989).
4. Iida, H. et al. Measurement of absolute myocardial blood flow with H215O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect. Circulation 78, 104-115 (1988).
5. Kuhle, W. G. et al. Quantification of regional myocardial blood flow using 13N-ammonia and reoriented dynamic positron emission tomographic imaging. Circulation 86, 1004-1017 (1992).
6. Lebrun-Grandie, P. et al. Coupling between regional blood flow and oxygen utilization in the normal human brain. A study with positron tomography and oxygen 15. Arch. Neurol. 40, 230-236 (1983).
7. Narita, Y. et al. [Evaluation of partial volume effect in quantitative measurement of regional cerebral blood flow using positron emission tomography]. Kaku Igaku 32, 163-172 (1995).
8. Schmidt, K. & Sokoloff, L. A computationally efficient algorithm for determining regional cerebral blood flow in heterogeneous tissues by positron emission tomography. IEEE Trans. Med. Imaging 20, 618-632 (2001).
9. Yoshida, K. et al. [Dynamic function studies with positron computed tomography: measurements of regional myocardial blood flow in hypertrophic cardiomyopathy]. J. Cardiol. Suppl 15, 55-60 (1987).
10. Avril, N. et al. Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations. J. Clin. Oncol. 18, 3495-3502 (2000).
11. Avril, N. et al. Metabolic characterization of breast tumors with positron emission tomography using F-18 fluorodeoxyglucose. J. Clin. Oncol. 14, 1848-1857 (1996).
12. Chen, K. et al. Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, 18F-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function. J. Cereb. Blood Flow Metab 18, 716-723 (1998).
13. Goldman, S. et al. Basal ganglia and frontal lobe glucose metabolism. A reproducibility positron emission tomography study. J. Neuroimaging 5, 219-226 (1995).
14. Handa, N. et al. Quantitative fluorine 18 deoxyglucose uptake by myocardial positron emission tomography in rats. J. Nucl. Cardiol. 9, 616-621 (2002).
15. Juhasz, C. et al. Glucose and [11C]flumazenil positron emission tomography abnormalities of thalamic nuclei in temporal lobe epilepsy. Neurology 53, 2037-2045 (1999).
16. Kuwert, T. et al. The influence of image resolution on the positron emission tomographic measurement of caudate glucose consumption. Eur. J. Nucl. Med. 20, 753-758 (1993).
17. Ratib, O. et al. Positron tomography with deoxyglucose for estimating local myocardial glucose metabolism. J. Nucl. Med. 23, 577-586 (1982).
18. Vesselle, H. et al. Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron emission tomography. Clin. Cancer Res. 6, 3837-3844 (2000).
19. Duncan, J. S. Positron emission tomography receptor studies in epilepsy. Rev. Neurol. (Paris) 155, 482-488 (1999).
20. Mawlawi, O. et al. Imaging human mesolimbic dopamine transmission with positron emission tomography: I. Accuracy and precision of D(2) receptor parameter measurements in ventral striatum. J. Cereb. Blood Flow Metab 21, 1034-1057 (2001).
21. Fazio, F. & Perani, D. Importance of partial-volume correction in brain PET studies. J. Nucl. Med. 41, 1849-1850 (2000).
22. Cumming, P. & Gjedde, A. Compartmental analysis of dopa decarboxylation in living brain from dynamic positron emission tomograms. Synapse 29, 37-61 (1998).
23. Muller-Gartner, H. W. et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J. Cereb. Blood Flow Metab 12, 571-583 (1992).
24. Wrenn jr., F. R., GOOD, M. L. & HANDLER., P. The use of positron emitting radioisotopes for localization of brain tumorsScience ; 113:525-527. Science 113, 525-527 (1951).
25. Vesselle, H. et al. In Vivo Validation of 3'deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT) as a Proliferation Imaging Tracer in Humans: Correlation of [(18)F]FLT Uptake by Positron Emission Tomography with Ki-67 Immunohistochemistry and Flow Cytometry in Human Lung Tumors. Clin. Cancer Res. 8, 3315-3323 (2002).
26. Hoffman, E. J., Huang, S. C. & Phelps, M. E. Quantitation in positron emission computed tomography. Part I: effect of object size. J. Comput. Assist. Tomogr. 3, 299-308 (1979).
27. Mazziotta, J. C., Phelps, M. E., Plummer, D. & Kuhl, D. E. Quantitation in positron emission computed tomography: 5. Physical-- anatomical effects. J. Comput. Assist. Tomogr. 5, 734-743 (1981).
28. Kessler, R. M., Ellis, J. R., Jr. & Eden, M. Analysis of emission tomographic scan data: limitations imposed by resolution and background. J. Comput. Assist. Tomogr. 8, 514-522 (1984).
29. Feng, D., Li, X. & Huang, S. C. A new double modeling approach for dynamic cardiac PET studies using noise and spillover contaminated LV measurements. IEEE Trans. Biomed. Eng 43, 319-327 (1996).
30. Hutchins, G. D., Caraher, J. M. & Raylman, R. R. A region of interest strategy for minimizing resolution distortions in quantitative myocardial PET studies. J. Nucl. Med. 33, 1243-1250 (1992).
31. Chen, C. H., Muzic, R. F., Jr., Nelson, A. D. & Adler, L. P. Simultaneous recovery of size and radioactivity concentration of small spheroids with PET data. J. Nucl. Med. 40, 118-130 (1999).
32. Yu, D. C. et al. Methods for improving quantitation of putamen uptake constant of FDOPA in PET studies. J. Nucl. Med. 34, 679-688 (1993).
33. Meltzer, C. C., Leal, J. P., Mayberg, H. S., Wagner, H. N., Jr. & Frost, J. J. Correction of PET data for partial volume effects in human cerebral cortex by MR imaging. J. Comput. Assist. Tomogr. 14, 561-570 (1990).
34. Videen, T. O., Perlmutter, J. S., Mintun, M. A. & Raichle, M. E. Regional correction of positron emission tomography data for the effects of cerebral atrophy. IEEE Trans. Nucl. Sci. 43, 3322-3327 (1996).
35. Meltzer, C. C. et al. MR-based correction of brain PET measurements for heterogeneous gray matter radioactivity distribution. J. Cereb. Blood Flow Metab 16, 650-658 (1996).
36. Chen, C. H., Muzic, R. F., Jr., Nelson, A. D. & Adler, L. P. A nonlinear spatially variant object-dependent system model for prediction of partial volume effects and scatter in PET. IEEE Trans. Med. Imaging 17, 214-227 (1998).
37. Shung, K. K., Smith, M. B. & Tsui, B. M. W. Principles of medical imaging., pp. 195-209 (Academic Press,1992).
38. Cherry, S. R. & Phelps, M. E. Diagnostic nuclear medicine., pp. 61-83 (Lippincott Williams &Wilkins, Philadephia,2003).
39. http://www.cs.uni-magdeburg.de/~nroeber/english/intern/node15.html. 2003.
Ref Type: Internet Communication
40. Sorenson, J. A. & Phelps, M. E. Physics in Nuclear Medicine, Second edition., pp. 424-451 (W.B. Saunders Company, Philadelphia,1987).
41. Parodi, O. et al. Cardiac emission computed tomography: underestimation of regional tracer concentrations due to wall motion abnormalities. J. Comput. Assist. Tomogr. 8, 1083-1092 (1984).
42. Ollinger, J. M. & Fessler, J. A. Positron emission tomography. IEEE Signal Processing Magazine 14, 43-55 (1997).
43. Nishimura, D. G. Principles of Magnetic Resonance Imaging., pp. 11-14 (Stanford University,1996).
44. Brown, M. A. & Semelka, R. C. MRI: basic principles and applications, second edition., pp. 1-8 (Wiley-Liss, Inc., New York,1999).
45. Westbrook, C. & Kaut, C. MRI: In Practice the second edition., pp. 1-16 (Blackwell Science Ltd, Oxford, UK,1998).
46. Westbrook, C. & Kaut, C. MRI: In Practice., pp. 47-80 (Blackwell Science Ltd, Oxford, UK,1998).
47. Videen, T. O., Dunford-Shore, J. E., Diringer, M. N. & Powers, W. J. Correction for partial volume effects in regional blood flow measurements adjacent to hematomas in humans with intracerebral hemorrhage: implementation and validation. J. Comput. Assist. Tomogr. 23, 248-256 (1999).
48. Woods, R. P., Grafton, S. T., Watson, J. D., Sicotte, N. L. & Mazziotta, J. C. Automated image registration: II. Intersubject validation of linear and nonlinear models. J. Comput. Assist. Tomogr. 22, 153-165 (1998).
49. Woods, R. P., Grafton, S. T., Holmes, C. J., Cherry, S. R. & Mazziotta, J. C. Automated image registration: I. General methods and intrasubject, intramodality validation. J. Comput. Assist. Tomogr. 22, 139-152 (1998).
50. Kapur, T., Grimson, W. E., Wells, W. M., III & Kikinis, R. Segmentation of brain tissue from magnetic resonance images. Med. Image Anal. 1, 109-127 (1996).
51. Held, K. et al. Markov random field segmentation of brain MR images. IEEE Trans. Med. Imaging 16, 878-886 (1997).
52. Rota Kops E. & Krause B.J Partialvolumeneffekte und Korrekturmethoden. In: PET in der klinischen Onkologie. Wieler, H. (Hrsg. ) Steinkopff Verlag, Darmstadt 35-45 (1999).
53. Press, W., Teukolsky, S., Vetterling, W. & Flannery, B. Numerical recipes in C., pp. 394-455 (Cambridge university press, New York,2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李怡娟(2000)•健康促進在護理專業中之應用•護理雜誌,47(1),5-12。
2. 王瑞霞、許秀月(1997)•社區老年人健康促進行為及其相關因素之探討-以高雄市三民區老人為例•護理研究,5(4),321-330。
3. 李怡娟(1998)•護理於老人健康政策的重要性•護理雜誌,45(6),16-21。
4. 王瑞霞、陳彰惠(2003)•由文獻回顧檢視潘得健康促進模式•護理雜誌,50 (6),62-68。
5. 李怡娟、武茂玲(2001)•健康社區營造與護理•護理雜誌,48(1),19-27。
6. 李明憲、林旭龍、呂昌明(2002)•四種簡易身體活動測量問卷效度、信度之探討─以RT3 Tri-axial三度空間加速器為效標•衛生教育學報,17,1-14。
7. 李明憲(2002)•國中小學童角色楷模、社會支持與身體活動量之關係探討•慈濟護理雜誌,1(1),46-55。
8. 呂昌明、林旭龍、黃奕清、李明憲、王淑芳(2001)•身體活動自我報告量表之效度及信度的研究─以TriTrac-R3D三度空間加速器為效標•衛生教育學報,17,99-114。
9. 呂昌明、李明憲、陳錫琦(2000)•都市國小學童身體活動及其影響因素之研究•衛生教育學報,14,95-111。
10. 呂寶靜(1995)•尊嚴和自主的老年之政策目標-談政策推動的原則•社會福利,120,8-130。
11. 杜娟娟(1998)•老人教育的社會學分析•社區發展季刊,83,53-61。
12. 邱怡玟、高淑芬、黃秀梨(1999)•龜山鄉舊路村老人健康狀況之調查研究•公共衛生,25(4),213-223。
13. 邱啟潤、張永源、陳武宗、黃洽鑽、黃忠信(2000)•高樹鄉農村老人健康狀況的評估研究•護理研究,8(2),227-240。
14. 高毓秀、黃奕清(2000)•成年人運動行為影響因素之路徑分析•護理研究,8(4),435-446。
15. 高淑芬、蕭冰如、蔡秀敏、邱珮怡(2000)•老年人的健康促進生活型態與衛生教育•護理雜誌,47(1),13-18。