(3.210.184.142) 您好!臺灣時間:2021/05/12 04:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇新仁
研究生(外文):Shin-Ren Su
論文名稱:以決策樹建構資料包絡法之績效評估模式
論文名稱(外文):Performance Measurement Model of Semiconductor Industry by DEA-based Approach
指導教授:蘇純繒蘇純繒引用關係
指導教授(外文):Chwen-Tzeng Su
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業工程與管理研究所碩士班
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:72
中文關鍵詞:資料包絡法資料探勘績效評估類神經網路
外文關鍵詞:Artificial Neural Network (ANN)Performance MeasurementData Mining (DT)Data Envelopment Analysis (DEA)
相關次數:
  • 被引用被引用:6
  • 點閱點閱:152
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
企業可透過績效評估來了解過去、目前甚至是未來公司的營運狀況,亦可做為營運危機預警的指標,如何提供一個有效且客觀的方法,來做為管理者在做決策時的參考依據就顯得其重要性,而在面對產業多投入與多產出的衡量指標,如何以客觀的角度來評估績效則顯得格外重要,資料包絡法則是常被用於評估此類績效的工具,然而資料絡包絡法須有多項的決策單位同時進行比較,無法利用單一個或是少量的決策變數(DMU)進行效率的運算,而是計算一群決策單位裡彼此的效率值以進行績效評估,所以當企業只能蒐集自己的資料時,運用資料包絡法建立績效評估模型則會遇到瓶頸。因此本研究以資料探勘中之決策樹歸納法,來學習資料包絡法的評估結果,並且在推估模型中,加入類神經網路所產生之變數,以提高評估模型的正確率。本研究透過我國相關高科技產業為單位來測試本研究的模型,並探討近年來產業的績效。經由模型建構與實際案例驗證後,本研究所建構的績效預測模型確實能夠提高決策樹歸納法對於資料包絡法的績效學習能力,並能有效地達成上述之三項目的。
Performance measurement is not only a technique frequently for estimate a business’s past, present or future performance, also be a basis for decision-making. Therefore, for a manufacturing system with multi-input and multi-output performance index, it is important to develop a subjective method to evaluate system performance. Although Data Envelopment Analysis (DEA) has been considered as a good approach in establishing this type of performance measurement system, it still has difficulties in dealing with system with incomplete information or less information. In this paper, a model which integrated DEA with Data Mining (DT) is conducted to measure enterprise performance of semiconductor industry. In addition, the Artificial Neural Network (ANN) is utilized in the model to enhance the discriminations of evaluation model.
The aims of this study are: First, to utilizing decision tree induction for building the model of DEA performance measurement; Second, combine decision tree induction with Artificial Neural Network which excellent for model-building to enhance the discriminations of evaluation model. Finally, we propose a practical case with Semiconductor Industry to test the evaluation model, and discuss the performance. The result shows that the proposed model can certainly enhance the discrimination of performance.
摘要 i
Abstract ii
誌謝詞 iii
目錄 iv
表目錄 vi
圖目錄 vii
一、序論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究設計與流程 3
二、文獻探討 5
2.1 資料包絡法 5
2.1.1 資料包絡分析法之概述 5
2.1.2 資料包絡法基本模式 7
2.1.3 投入產出項關係之認定 10
2.1.4 資料包絡法應用領域 11
2.2 決策樹歸納法 13
2.2.1 決策樹歸納法之概述 13
2.2.2決策樹基本模式 15
2.2.3 決策樹應用領域 16
2.3 類神經網路 18
2.3.1類神經基本概念與模式 18
2.3.2類神經網路應用領域 19
三、績效評估模型之建立 21
3.1 演算模式簡介 21
3.2 績效評估模型 21
3.3 資料分析 29
3.3.1 效率分析 29
3.3.2 績效辨識能力分析 30
3.3.3 敏感度分析 30
3.4 決策變數探討 31
四、我國半導體相關產業之績效評估模型測試 34
4.1 資料說明 34
4.2 資料包絡法績效評估 35
4.3 BPN變數建立 37
4.4 DT績效評估模型之訓練 41
4.5 DT績效評估模型之測試 44
4.6 DEA效率分析 47
4.7 績效辨識能力分析 50
4.8 敏感度分析 53
五、結論與建議 55
參考文獻 57
李穆生,「績效管理-台南縣環保局推動績效管理實務介紹」,人事月刊,第二零八期,2002,39-41頁。
高強,黃旭男,Toshiyuki Sueyoshi,管理績效評估 資料包絡法分析法,台北:華泰文化事業部,2003。
許文彥,王詩穎,「我國產險業最低資本額與資本結構之研究」,風險管理學報,第五卷第一期,2003,109-125頁。
黃崇興,「應用數據包絡法於航空公司航線經營效率之分析」,管理學報,第十七卷,第一期,2000,149-181頁。
陳亮元、曾倫崇,「生技產業群聚,廠商互動與經營績效關聯性研究」,2002年中華民國科技管理學會暨論文研討會,義守大學,2002,125-131頁。
陳文峰,「半導體產業第三次變革的現況與影響」,1998電子電機工業年鑑,1998,130-139頁。
葉桂珍,陳昱志,「銀行經營績效分析-資料包絡分析法(DEA)與財務比率法之比較」,企銀季刊,第十九卷第二期,1995,30-39頁。
劉常勇,台灣半導體產業發展與競爭:科技產業投資經營與競爭,台北:華泰文化事業公司,1997。
戴謙、楊惠郎、楊慶昌、張文昌,「利用生技園區促進生技產業聚落效應」,南台灣生技產業推動小組出版,2001,第12期,20-27頁。
Braglia, M., Zanoni, S. and Zavanella, L., “Measuring and benchmarking productive systems performance using DEA: an industrial case,” Production Planning & Control, Vol. 14, 2003, pp.542-554.
Beasley, J. E., “Determining teaching and research efficiencies,” Journal of the Operational Research Society, Vol. 46, 1995, pp. 441-452.
Becker, B. and Gerhart, B., “The impact of human resource management on organizational performance: progress and prospects,” Academy of Management Journal, Vol. 39, 1996, pp. 796-797.
Banker, R. D., Charnes, A. and Cooper, W. W., “Some models for estimating technical and scale inefficiencies in data envelopment analysis,” Management Science, Vol. 30, 1984, pp. 126-135.
Barber, B.M. and Lyon, J.D., “Firm size, book-to-market ratio, and security return: A holdout sample of financial firms,” The Journal of Finance, Vol. 52, 1997, pp. 875-883.
Chen, Y. L., Hsu, C. L. and Chou, D. C., “Constructing a multi-valued and multi-labeled decision tree”, Expert System with Application, Vol. 25, 2003, pp. 199-209.
Charnes, A., Cooper, W. W. and Rhodes, E., “Measuring the Efficiency of Decision Making Units,” European Journal of Operational Research, Vol. 2, 1978, pp. 429-444.
Cook, W. D. and Green, R. H., “Multicomponent efficiency measurement and core business identification in multiplant firms: A DEA model,” European Journal of Operational Research, Vol. 157, 2004, pp. 540-551.
Cook, W. D., Hababou, M. and Tuenter, H. J. H., “Multicomponent efficiency measurement and shared inputs in DEA: an application to scales and service performance in bank branches,” Journal of Productivity Analysis, Vol. 14, 2000, pp. 209-224.
Donato, J. M, Schryver, J. C., Hinkel, G. C., Schmoyer, R. L., Leuze, M. R. and Grandy, N. W., “Mining multi-dimensional data for decision support”, IEEE Future Generation Computer Systems, Vol.14, 1999, pp.433-441.
Dekkers, R., “Strategic Capacity management: meeting technological demands and performance criteria,” Journal of Materials Processing Technology, Vol. 139, 2003, pp. 385-393.
Defire, R. S. and Chan, C. W. J., “Multiple Criteria for Evaluating Machine Learning Algorithms for Land Cover Classification from Satellite Data,” Remote Sensing of Environment, Vol. 74, 2000, pp.503-515.
Farrell, M. J., “The measurement pf productive efficiency,” Journal of statistical Society, Vol. 120, 1957, pp. 256-281.
Fama, E.F. and French, K. R., “Value versus growth: The international evidence,” The Journal of Finance, Vol. 53, 1998, pp.1975-1999.
Golany, B. and Storbeck, J. E., “A Data Envelopment Analysis of the Operational Efficiency of Bank Branches,” Interfaces, Vol. 29, 1999, pp 14-26.
Gregor, P. J. S., Chris, A. and Francois, S. G., “ANN-DT: an algorithm for extraction of decision tree from artificial neural networks,” IEEE Transaction on Neural Networks, Vol. 10, 1999, pp.1392-1401.
Gunasekaran, S., Venkatesh, B. and Sagar, B. S. D., “Convergence index for BPN training,” Neurocomputing, Vol. 55, 2003, pp.711-719.
Golany, B. and Roll, Y., “An Application Procedure for DEA,” OMEGA: International Journal of Management Science, Vol. 17, 1989, pp.237-250.
Hastie, T., Friedman, J. and Tibshirani, R. The element of statistical learning, New York, Springer-Verlag, 2001.
Hong, J., Ding, M. and Li, X., “A New Algorithm of Decision Tree Induction”, Chinese Science Abstracts Series, Vol.14, 1995, pp. 54-55.
Huang, C. L., Huang, Y. H., Chang, T. Y., Chang, S. H., Chung, C. H., Huang, D. T. and Li, R. K., “The construction of production performance prediction system for semiconductor manufacturing with artificial neural network,” International Journal of Production and Research, Vol. 37, 1999, pp.1387-1402.
Handfield, R., Ghosh, S. and Fawcett. S., “Quality-driven change and its effects on financial performance,” Quality Management Research, Vol. 37, 1998, pp. 1403-1426.
Hwang, S. N. and Chang, T. Y., “Using data envelopment analysis to measure hotel managerial efficiency change in Taiwan,” Tourism Management, Vol. 24, 2003, pp. 357-369.
Ishwar, K. S. and Jae, H. Y., “Structure-driven induction of decision tree classifiers through neural learning,” Pattern Recognition, Vol. 30, 1997, pp. 1893-1904.
Kurt, H., “Dynamic project selection and funding under risk: A decision tree based MILP approach”, European Journal of Operational Research, Vol. 95, 1996, pp.284-298.
Kim, H. and Koehler, G., “Theory and Practice of Decision Tree Induction”, Omega, Vol. 23, 1995, pp.637-652.
Krishnan R., Sivakumar G., Bhattacharya P., “Extracting decision trees from trained neural networks,” Pattern Recognition, Vol: 32, 1999, pp. 1999-2009.
Kleinschmidt, E. J. and Cooper, R. G., “The impact of product innovativeness on performance,” The Journal of Product Innovation Management, Vol. 8, 1991, pp. 240-251.
Lootsma, F. A., “Multicriteria decision analysis in a decision tree”, European Journal of Operational Research, Vol. 101, 1997, pp. 442-451.
Lewin, A.Y. and John, W. M., “Determining Organizational Effectiveness: Another Look, and Agenda for Research,” Management Science, Vol. 32, 1986, pp. 514-537.
Ling, F. Y. Y. and Liu, M., “Using neural network to predict performance of design-build projects in Singapore,” Building and Environment, Vol. 39, 2004, pp.1263-1274.
Martens, J., Wet, G., Vanthienen, J. and Mues, C., “An initial comparison of a fuzzy neural classifier and a decision tree based classifier”, Expert System with Application, Vol. 15, 1998, pp.375-381.
Matthew, G. K., “A DEA approach for evaluating the efficiency and effectiveness of urban transit systems,” European Journal of Operational Research, Vol. 152, 2004, pp. 254-264.
Monica, L., “Neural network techniques for financial performance predication: integrating fundamental and technical analysis,” Decision Support System, Vol. 37, 2004, pp.567-581.
Michael, N., Artificial Intelligent: A Guide to Intelligent System, England, Pearson Education Limited, 2002.
Maged M. H., Mona G. K. and Ezzat, A. H., “Prediction of wastewater treatment plant performance using artificial neural network,” Environmental Modeling & Software, Vol. 19, 2004, pp.919-928.
Morey, R. C. and Dittman, D. A., “Evaluating a hotel GM’s performance,” Cornell Hotel & Restaurant Administration Quarterly, Vol. 36, 1995, pp. 18-32.
Pyle, D., Data Preparation for Data Mining, USA, San Francisco, Morgan Kaufmann Publishers, 1999.
Pahwa, A., Feng, X. and Lubkeman, D., “Performance Evaluation of Electric Distribution Utilities Based on Data Envelopment Analysis,” IEEE Transaction on Power System, Vol. 17, 2002, pp. 400-405.
Paul, A. P., Fiona, M. D. and Luiz, M., “The Interactive Effects of Strategic Marketing Planning and Performance: A Neural Network Analysis,” Journal of Marketing Management, Vol. 17, 2001, pp. 159-182.
Parag, C.P. and James, A. R., “Technical efficiency-based selection of learning cases to improve forecasting accuracy of neural network under monotonicity assumption,” Decision Support System, Vol. 36, 2003,pp. 117-136.
Quinlan, J. R., C4.5 Programs for machine learning, California, San Mateo: Morgan Kaufmann Publishers, 1993.
Ram, K. K. R. and Charles, Y., “Examining the market orientation-performance relationship: a context-specific study,” Journal of Management, Vol. 24, 1998, pp.201-233.
Seunghee, W., Carol, W. S. and Lee, K. E., “A decision tree for selecting the most cost-effective waste disposal strategy in foodservice operations”, Journal of the American Dietetic Association, Vol. 103, 2003, pp. 475-482.
Sun, S., “Assessing joint maintenance shops in Taiwanese Army using data envelopment analysis,” Journal of Operations Management, Vol. 22, 2004, pp. 233-245.
Sohn, S. Y. and Moon, T. H., “Decision tree based on data envelopment analysis for effective technology commercialization,” Expert Systems with Applications, Vol. 26, 2004, pp. 274-284.
Seiford, L. M., “Data envelopment analysis: the evolution of the state of the art (1979-1995),” Journal of Productivity Analysis, Vol. 7, 1996, pp.99-137.
Spring, M. and Dalrymple, J. F., “Product customization and manufacturing strategy,” International Journal of Operation and Production Management, Vol. 20, 2000, pp. 441-467.
Sowlati, T., “Efficiency studies in forestry using data envelopment analysis,” FOREST PRODUCTS JOURNAL, Vol. 55, 2005, pp.49-57.
Sarkis, J. and Talluri, “Eco-efficiency measurement using data envelopment analysis: research and practitioner issues,” Journal of Environmental Assessment Policy and Management, Vol. 6, 2004, pp.91-123.
Schlimmer, J. C. and Granger, R. H., “Incremental learning from noisy data,” Machine Learning, Vol.1, 1986, pp.317-354.
Sommer, D. W., “The impact of firm risk on property-liability insurance prices,” Journal of Risk and Insurance, Vol. 63, 1996, pp. 501-514.
Tokunaga, H., Atlam, E. S., Fuketa, M., Morita, F., Tsuda, K. and Aoe, J.I., “Estimating sentence types in computer related new product bulletins using a decision tree”, Information Science, Vol. 168, 2004, pp.185-200.
Talluri, S., Whiteside, M. M. and Seipel, S. S., “A nonparametric stochastic procedure for FMS evaluation,” European Journal of Operational Research, Vol. 124, 2000, pp. 529-538.
Wang, S., “Adaptive non-parametric efficiency frontier analysis: a neural-network-based model,” Computer & Operations Research, Vol. 30,2003, pp. 279-295.
Yun, Y. B., Nakayama, H and Arakawa, M., “Multiple criteria decision making with generalized DEA and an aspiration level method,” European Journal of Operational Research, Vol. 158, 2004, pp. 697-706.
Zahra, S. A. and Bogner, W. C., “Technology strategy and software new venture’s performance: Exploring the moderating effect of the competitive environment,” Journal of Business Venturing, Vol. 15, 1999, pp. 135-173.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 17.周齊武、杜榮瑞及顏信輝(民89),「我國會計系教學績效評量之探討」,會計研究月刊,170 期,頁113-122。
2. 16.徐木蘭(民88),「360 度績效評估是政府部門的胎盤素」,考銓季刊,18 期,頁28-30。
3. 15.林嬋娟,鄭添原(民88),「政府財務報導與會計資訊有用性研究」,主計月報,88 卷2 期:61-72。
4. 12.李建華(民88),「從平衡計分卡理論談會計教育績效指標之釐訂」,會計研究月刊,163 期: 33-36。
5. 7.任可怡(民88),「美國聯邦政府績效評量制度改革之初探」,考銓季刊,19 期:116-124。
6. 5.王毓仁(民89),「公部門績效指標的設計與應用」,人力發展月刊 第82期。
7. 30.黃建銘(民88),「組織績效指標的運用與管理意涵— 英國經驗之探討」,人事行政,127 期,頁70-78。
8. 36.劉正田、林維珩、袁玉珠(民91),「公共工程預算執行之策略性績效衡量指標-平衡計分卡之應用」,當代會計第3 卷第2 期,頁149-181。
9. 40.蘇裕惠(民89),「實施平衡卡的七大迷思與三大要點」,會計研究月刊,第179 期,頁29-34。
10. 李穆生,「績效管理-台南縣環保局推動績效管理實務介紹」,人事月刊,第二零八期,2002,39-41頁。
11. 許文彥,王詩穎,「我國產險業最低資本額與資本結構之研究」,風險管理學報,第五卷第一期,2003,109-125頁。
12. 葉桂珍,陳昱志,「銀行經營績效分析-資料包絡分析法(DEA)與財務比率法之比較」,企銀季刊,第十九卷第二期,1995,30-39頁。
 
系統版面圖檔 系統版面圖檔