李穆生,「績效管理-台南縣環保局推動績效管理實務介紹」,人事月刊,第二零八期,2002,39-41頁。高強,黃旭男,Toshiyuki Sueyoshi,管理績效評估 資料包絡法分析法,台北:華泰文化事業部,2003。
許文彥,王詩穎,「我國產險業最低資本額與資本結構之研究」,風險管理學報,第五卷第一期,2003,109-125頁。黃崇興,「應用數據包絡法於航空公司航線經營效率之分析」,管理學報,第十七卷,第一期,2000,149-181頁。
陳亮元、曾倫崇,「生技產業群聚,廠商互動與經營績效關聯性研究」,2002年中華民國科技管理學會暨論文研討會,義守大學,2002,125-131頁。
陳文峰,「半導體產業第三次變革的現況與影響」,1998電子電機工業年鑑,1998,130-139頁。
葉桂珍,陳昱志,「銀行經營績效分析-資料包絡分析法(DEA)與財務比率法之比較」,企銀季刊,第十九卷第二期,1995,30-39頁。劉常勇,台灣半導體產業發展與競爭:科技產業投資經營與競爭,台北:華泰文化事業公司,1997。
戴謙、楊惠郎、楊慶昌、張文昌,「利用生技園區促進生技產業聚落效應」,南台灣生技產業推動小組出版,2001,第12期,20-27頁。
Braglia, M., Zanoni, S. and Zavanella, L., “Measuring and benchmarking productive systems performance using DEA: an industrial case,” Production Planning & Control, Vol. 14, 2003, pp.542-554.
Beasley, J. E., “Determining teaching and research efficiencies,” Journal of the Operational Research Society, Vol. 46, 1995, pp. 441-452.
Becker, B. and Gerhart, B., “The impact of human resource management on organizational performance: progress and prospects,” Academy of Management Journal, Vol. 39, 1996, pp. 796-797.
Banker, R. D., Charnes, A. and Cooper, W. W., “Some models for estimating technical and scale inefficiencies in data envelopment analysis,” Management Science, Vol. 30, 1984, pp. 126-135.
Barber, B.M. and Lyon, J.D., “Firm size, book-to-market ratio, and security return: A holdout sample of financial firms,” The Journal of Finance, Vol. 52, 1997, pp. 875-883.
Chen, Y. L., Hsu, C. L. and Chou, D. C., “Constructing a multi-valued and multi-labeled decision tree”, Expert System with Application, Vol. 25, 2003, pp. 199-209.
Charnes, A., Cooper, W. W. and Rhodes, E., “Measuring the Efficiency of Decision Making Units,” European Journal of Operational Research, Vol. 2, 1978, pp. 429-444.
Cook, W. D. and Green, R. H., “Multicomponent efficiency measurement and core business identification in multiplant firms: A DEA model,” European Journal of Operational Research, Vol. 157, 2004, pp. 540-551.
Cook, W. D., Hababou, M. and Tuenter, H. J. H., “Multicomponent efficiency measurement and shared inputs in DEA: an application to scales and service performance in bank branches,” Journal of Productivity Analysis, Vol. 14, 2000, pp. 209-224.
Donato, J. M, Schryver, J. C., Hinkel, G. C., Schmoyer, R. L., Leuze, M. R. and Grandy, N. W., “Mining multi-dimensional data for decision support”, IEEE Future Generation Computer Systems, Vol.14, 1999, pp.433-441.
Dekkers, R., “Strategic Capacity management: meeting technological demands and performance criteria,” Journal of Materials Processing Technology, Vol. 139, 2003, pp. 385-393.
Defire, R. S. and Chan, C. W. J., “Multiple Criteria for Evaluating Machine Learning Algorithms for Land Cover Classification from Satellite Data,” Remote Sensing of Environment, Vol. 74, 2000, pp.503-515.
Farrell, M. J., “The measurement pf productive efficiency,” Journal of statistical Society, Vol. 120, 1957, pp. 256-281.
Fama, E.F. and French, K. R., “Value versus growth: The international evidence,” The Journal of Finance, Vol. 53, 1998, pp.1975-1999.
Golany, B. and Storbeck, J. E., “A Data Envelopment Analysis of the Operational Efficiency of Bank Branches,” Interfaces, Vol. 29, 1999, pp 14-26.
Gregor, P. J. S., Chris, A. and Francois, S. G., “ANN-DT: an algorithm for extraction of decision tree from artificial neural networks,” IEEE Transaction on Neural Networks, Vol. 10, 1999, pp.1392-1401.
Gunasekaran, S., Venkatesh, B. and Sagar, B. S. D., “Convergence index for BPN training,” Neurocomputing, Vol. 55, 2003, pp.711-719.
Golany, B. and Roll, Y., “An Application Procedure for DEA,” OMEGA: International Journal of Management Science, Vol. 17, 1989, pp.237-250.
Hastie, T., Friedman, J. and Tibshirani, R. The element of statistical learning, New York, Springer-Verlag, 2001.
Hong, J., Ding, M. and Li, X., “A New Algorithm of Decision Tree Induction”, Chinese Science Abstracts Series, Vol.14, 1995, pp. 54-55.
Huang, C. L., Huang, Y. H., Chang, T. Y., Chang, S. H., Chung, C. H., Huang, D. T. and Li, R. K., “The construction of production performance prediction system for semiconductor manufacturing with artificial neural network,” International Journal of Production and Research, Vol. 37, 1999, pp.1387-1402.
Handfield, R., Ghosh, S. and Fawcett. S., “Quality-driven change and its effects on financial performance,” Quality Management Research, Vol. 37, 1998, pp. 1403-1426.
Hwang, S. N. and Chang, T. Y., “Using data envelopment analysis to measure hotel managerial efficiency change in Taiwan,” Tourism Management, Vol. 24, 2003, pp. 357-369.
Ishwar, K. S. and Jae, H. Y., “Structure-driven induction of decision tree classifiers through neural learning,” Pattern Recognition, Vol. 30, 1997, pp. 1893-1904.
Kurt, H., “Dynamic project selection and funding under risk: A decision tree based MILP approach”, European Journal of Operational Research, Vol. 95, 1996, pp.284-298.
Kim, H. and Koehler, G., “Theory and Practice of Decision Tree Induction”, Omega, Vol. 23, 1995, pp.637-652.
Krishnan R., Sivakumar G., Bhattacharya P., “Extracting decision trees from trained neural networks,” Pattern Recognition, Vol: 32, 1999, pp. 1999-2009.
Kleinschmidt, E. J. and Cooper, R. G., “The impact of product innovativeness on performance,” The Journal of Product Innovation Management, Vol. 8, 1991, pp. 240-251.
Lootsma, F. A., “Multicriteria decision analysis in a decision tree”, European Journal of Operational Research, Vol. 101, 1997, pp. 442-451.
Lewin, A.Y. and John, W. M., “Determining Organizational Effectiveness: Another Look, and Agenda for Research,” Management Science, Vol. 32, 1986, pp. 514-537.
Ling, F. Y. Y. and Liu, M., “Using neural network to predict performance of design-build projects in Singapore,” Building and Environment, Vol. 39, 2004, pp.1263-1274.
Martens, J., Wet, G., Vanthienen, J. and Mues, C., “An initial comparison of a fuzzy neural classifier and a decision tree based classifier”, Expert System with Application, Vol. 15, 1998, pp.375-381.
Matthew, G. K., “A DEA approach for evaluating the efficiency and effectiveness of urban transit systems,” European Journal of Operational Research, Vol. 152, 2004, pp. 254-264.
Monica, L., “Neural network techniques for financial performance predication: integrating fundamental and technical analysis,” Decision Support System, Vol. 37, 2004, pp.567-581.
Michael, N., Artificial Intelligent: A Guide to Intelligent System, England, Pearson Education Limited, 2002.
Maged M. H., Mona G. K. and Ezzat, A. H., “Prediction of wastewater treatment plant performance using artificial neural network,” Environmental Modeling & Software, Vol. 19, 2004, pp.919-928.
Morey, R. C. and Dittman, D. A., “Evaluating a hotel GM’s performance,” Cornell Hotel & Restaurant Administration Quarterly, Vol. 36, 1995, pp. 18-32.
Pyle, D., Data Preparation for Data Mining, USA, San Francisco, Morgan Kaufmann Publishers, 1999.
Pahwa, A., Feng, X. and Lubkeman, D., “Performance Evaluation of Electric Distribution Utilities Based on Data Envelopment Analysis,” IEEE Transaction on Power System, Vol. 17, 2002, pp. 400-405.
Paul, A. P., Fiona, M. D. and Luiz, M., “The Interactive Effects of Strategic Marketing Planning and Performance: A Neural Network Analysis,” Journal of Marketing Management, Vol. 17, 2001, pp. 159-182.
Parag, C.P. and James, A. R., “Technical efficiency-based selection of learning cases to improve forecasting accuracy of neural network under monotonicity assumption,” Decision Support System, Vol. 36, 2003,pp. 117-136.
Quinlan, J. R., C4.5 Programs for machine learning, California, San Mateo: Morgan Kaufmann Publishers, 1993.
Ram, K. K. R. and Charles, Y., “Examining the market orientation-performance relationship: a context-specific study,” Journal of Management, Vol. 24, 1998, pp.201-233.
Seunghee, W., Carol, W. S. and Lee, K. E., “A decision tree for selecting the most cost-effective waste disposal strategy in foodservice operations”, Journal of the American Dietetic Association, Vol. 103, 2003, pp. 475-482.
Sun, S., “Assessing joint maintenance shops in Taiwanese Army using data envelopment analysis,” Journal of Operations Management, Vol. 22, 2004, pp. 233-245.
Sohn, S. Y. and Moon, T. H., “Decision tree based on data envelopment analysis for effective technology commercialization,” Expert Systems with Applications, Vol. 26, 2004, pp. 274-284.
Seiford, L. M., “Data envelopment analysis: the evolution of the state of the art (1979-1995),” Journal of Productivity Analysis, Vol. 7, 1996, pp.99-137.
Spring, M. and Dalrymple, J. F., “Product customization and manufacturing strategy,” International Journal of Operation and Production Management, Vol. 20, 2000, pp. 441-467.
Sowlati, T., “Efficiency studies in forestry using data envelopment analysis,” FOREST PRODUCTS JOURNAL, Vol. 55, 2005, pp.49-57.
Sarkis, J. and Talluri, “Eco-efficiency measurement using data envelopment analysis: research and practitioner issues,” Journal of Environmental Assessment Policy and Management, Vol. 6, 2004, pp.91-123.
Schlimmer, J. C. and Granger, R. H., “Incremental learning from noisy data,” Machine Learning, Vol.1, 1986, pp.317-354.
Sommer, D. W., “The impact of firm risk on property-liability insurance prices,” Journal of Risk and Insurance, Vol. 63, 1996, pp. 501-514.
Tokunaga, H., Atlam, E. S., Fuketa, M., Morita, F., Tsuda, K. and Aoe, J.I., “Estimating sentence types in computer related new product bulletins using a decision tree”, Information Science, Vol. 168, 2004, pp.185-200.
Talluri, S., Whiteside, M. M. and Seipel, S. S., “A nonparametric stochastic procedure for FMS evaluation,” European Journal of Operational Research, Vol. 124, 2000, pp. 529-538.
Wang, S., “Adaptive non-parametric efficiency frontier analysis: a neural-network-based model,” Computer & Operations Research, Vol. 30,2003, pp. 279-295.
Yun, Y. B., Nakayama, H and Arakawa, M., “Multiple criteria decision making with generalized DEA and an aspiration level method,” European Journal of Operational Research, Vol. 158, 2004, pp. 697-706.
Zahra, S. A. and Bogner, W. C., “Technology strategy and software new venture’s performance: Exploring the moderating effect of the competitive environment,” Journal of Business Venturing, Vol. 15, 1999, pp. 135-173.