跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/03/18 18:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐慧芬
研究生(外文):Hui-fen Hsu
論文名稱:VBIC模型應用於不同尺寸異質接面雙載子電晶體之研究
論文名稱(外文):Application of the VBIC Model on Heterojunction Bipolar Transistors of Different Sizes
指導教授:張彥華
指導教授(外文):Yang-Hua Chang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:173
中文關鍵詞:砷化鎵異質接面雙載子電晶體熱阻VBIC模型自發熱效應
外文關鍵詞:GaAsHBTVBIC modelthermal resistanceself-heating effect
相關次數:
  • 被引用被引用:3
  • 點閱點閱:360
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要針對砷化鎵為基材之異質接面雙載子電晶體建立於VBIC模型作為討論。論文重點分為三部分:探討不同熱阻的電性量測方法,HBT模型之簡化及最佳化過程,以及探討不同尺寸大小之HBT模型。

第一部分為熱阻之萃取方法。由於砷化鎵之熱導係數(Thermal conductivity)只有矽的三分之一,當元件HBT操作於高功率密度下時,元件溫度將大幅上升,因而產生自發熱效應(Self-heating effect),它將造成元件性能及可靠度變差,而熱阻為熱效應的指標,左右了元件操作特性。

第二部分為主要探討VBIC 模型應用於 HBT 之簡化及最佳化過程,希望能有效提升 HBT 元件模型,以達到最佳化的效率又不失其準確性。由於元件模型在電路設計時扮演著很重要的角色,可以讓設計者直接由模型參數中了解元件的特性。針對元件直流及高頻量測結果所建立出的模型,則可作為分析元件的物理意義。並且模擬結果所產生的誤差可作為修正模擬的參考依據。

第三部分為將VBIC模型應用於不同尺寸之異質接面雙載子電晶體上,比較不同尺寸大小之HBT模型之參數,並加以討論。
This thesis focuses on the VBIC model of HBTs with GaAs substrates. The thesis
contains three parts: to study the electrical measurement method of the thermal
resistance, the simplification and the optimization process of the HBT model, and to establish the HBT models of different scaling size.

The first part is the extraction method of thermal resistance. The thermal
conductivity of GaAs substrate is as low as only 1/3 of that of silicon substrate. Since HBTs are operated at high power levels, the devices temperature will significantly rise,which produces the self-heating effect. It will degrade the device performance and reliability. Thermal resistance is the key parameter of thermal effect; it dominates the device characteristics during high power operation.

The second part is the simplification and the optimization process of the VBIC
model applied for the HBT. Based on this process, users would optimize the VBIC
model of HBTs efficiently and exactly. An accurate model is very important for IC design. IC designer will directly acquire device characteristics from the parameters ofthe model. For the model established from DC and high frequency measurement results,the physical properties of the device can be analyzed.

The third part is to establish the VBIC model for HBTs in different sizes.
Parameters of these models are compared, and the scaling of parameters is discussed.
中文摘要................................ i
英文摘要................................ ii
致謝.................................. iv
表目錄................................. vii
圖目錄................................. viii
第一章 簡介.............................. 1
1.1 研究動機.............................. 1
1.2 論文摘要.............................. 2
第二章 HBT原理結構與物理特....................... 3
2.1 HBT操作原理與特性......................... 5
2.1.1 HBT操作原理........................... 5
2.1.2 HBT之直流特性.......................... 7
2.2 HBT之非理想特性.......................... 10
2.2.1 電流增益下降機制......................... 11
2.2.2 熱效應與射極中性區電阻之分析................... 13
第三章 VBIC模型之建立及參數萃取方法.................. 18
3.1 VBIC模型之建構........................... 19
3.2 VBIC模型DC及AC參數之萃取方法.................... 25
3.2.1 空乏電容之萃取.......................... 25
3.2.2 Early voltage之萃取....................... 29
3.2.3 Gummel plot之電流參數萃取.................... 30
3.2.4 類飽和效應萃取(Quasi-saturation)................ 33
3.2.5 射極寄生電阻 (Emitter resistor, RE) ............... 34
3.2.6 集極寄生電阻 (Collector resistor, RC) .............. 35
3.2.7 基極寄生電阻 (Base resistor, RB) ................ 36
3.2.8 傳輸時間參數萃取......................... 37
3.2.9 相關溫度參數之建立 (Temperature mapping)............. 40
第四章 熱阻量測方法.......................... 46
4.1 方法一............................... 47
4.2 方法二............................... 48
4.3 方法三............................... 51
4.4 探討各種量測方法之結果....................... 59
4.5 比較各種量測結果之優異....................... 64
第五章 VBIC模型應用於HBT元件之參數簡化及最佳化............. 67
5.1 VBIC模型應用於HBT元件之參數簡化程序................ 68
5.2 VBIC模型應用於HBT元件之最佳化程序................. 88
第六章 不同尺寸HBT之Scaling...................... 109
6.1 各組不同尺寸大小之HBT結構..................... 110
6.2 各個參數之說明........................... 111
6.2.1 HBT 之三端電阻.......................... 111
6.2.2 HBT 之熱阻............................ 116
6.2.3 HBT 之各項電流.......................... 117
6.2.4 HBT 之空乏電容.......................... 118
6.3 A組 Device不同尺寸大小之HBT元件.................. 120
6.3.1 探討A-HBT之Scaling........................ 123
6.4 B組 Device不同尺寸大小之HBT元件.................. 128
6.4.1 探討B-HBT之Scaling........................ 130
6.5 C組 Device不同尺寸大小之HBT.................... 134
6.5.1 探討C-HBT之Scaling........................ 137
6.6 D組Device不同尺寸大小之HBT元件................... 141
6.6.1 探討D-HBT之Scaling........................ 142
6.7 分析各組尺寸大小相同之HBT ..................... 146
第七章 結論...............................151
參考文獻................................ 152
自傳.................................. 157
[1] W. Shockley and H. Kroemer, “Theory of Wide-gap Emitter for
Transistors”, IRE, 1957, Vol. 45, pp. 1535.

[2] Willam Liu, “Handbook of III-V Heterojunction Bipolar Transistors”,
John Wiley & Sons, 1998, pp. 640-641.

[3] J. J. Liou, “An Improved and Analytical Model for the Current Transport
in Graded Heterojunction Bipolar Transistors”, Solid-St. Electronics,
1995, Vol. 38, pp. 946.

[4] William Liu, “Handbook of III-V Heterojunction Bipolar Transistors”,
John Wiley & Sons, 1998, pp. 152-157.

[5] William Liu, “Handbook of III-V Heterojunction Bipolar Transistors”,
John Wiley & Sons, 1998, pp. 142-152.

[6] William Liu, “Handbook of III-V Heterojunction Bipolar Transistors”,
John Wiley & Sons, 1998, pp. 233-331.

[7] Donald A. Neamen, ”Semiconductor Physics AND Device”, McGraw-Hill,
Third Edition, 2003, pp. 218-223.

[8] Y. Zhu, J. K. Twynam, M. Yagura, M. Hasegawa, T. Hasegawa, Y. Eguchi, Y.
Amano, E. Suematsu, ”Self-Heating Effect Compensation in HBTs and Its
Analysis and Simulation”, IEEE Trans.Electron Devices, 2001, vol. 48,
pp.2640-2645.

[9] W. Liu, A. Khatibzadeh, J.Sweder, and H-F. Chau, “The Use 6T Base
Ballasting to Prevent the Collaps of Current Gain in AlGaAs/GaAs
Heterojunction Bipolar Transistors”, IEEE Trans. Electron Devices, 1996,
Vol. 43, No.2, pp.280.

[10] 張簡真君,2002,多射極結構磷化銦鎵/砷化鎵異質接面雙極性電晶體之射極間距設
計,國立雲林科技大學,碩士論文。

[11] 李宣慶,2003,異質接面雙載子電晶體表面溫度之研究,國立雲林科技大學,碩士論
文。

[12] H. K. Gummel, and H. C. Poon, “An integrated charge control model of
bipolar transistor”, Bell Syst Tech. J. ,1970, 49, pp827-852.

[13] C. C. McAndrew et al., “VBIC95,the vertical bipolar inter-company
model”, IEEE J. Solid-State Circuit, 1996, vol. 31, pp1476-1483.

[14] C. C. McAndrew, B. K. Bhattacharyya, and O. Wing, “A C∞-Continuous
Depletion Cpacitane Model ”, IEEE Trans. On CAD of Integrated Circuit &
System, 1993, vol. 12, pp. 825-828.

[15] C. C. McAndrew and L. W. Nagel, “SPICE Early Modeling”, Bipolar/BiCMOS
circuits & Tech. Meeting, 1994, pp.144-147.

[16] G. M. Kull, L. W. Nagel, S.-W. Lee, P. Lloyd, E. J. Prendergast, and H.
K. Dirks, “A Unified Circuit Model for Bipolar Transistors Including
Quasi-Saturation Effect” , IEEE trans. Electron Devices, 1985, 32,
pp.1103-1113.

[17] William Liu, “Handbook of III-V Heterojunction Bipolar Transistors”,
John Wiley & Sons, 1998, pp. 238-241.

[18] Willam Liu, “Handbook of III-V Heterojunction Bipolar Transistors”,
John Wiley & Sons, 1998, pp. 1088-1090.

[19] 陳駿毅,2003,VBIC等效模型對異質接面雙載子電晶體之研究,國立雲林科大學,碩
士論文。.

[20] M. Olavsbraten, “Parameter Extraction and Evaluation of the Bias
Dependence of Tf, for the VBIC Model Used on a GaAs HBT”, GAAS2001
Conference Proceedings, September 2001.

[21] S. V. Cherepko and J. C. M. Hwang, “VBIC MODEL APPLICABILITY AND
EXTRACTION PROCEDURE FOR InGaP/GaAs HBT”, Proceedings of APMC2001, 2001,
pp.716-721.

[22] William Liu, “Handbook of III-V Heterojunction Bipolar Transistors”,
John Wiley & Sons, 1998, pp. 1095-1097.

[23] C. C. McAndrew, “A Complete and Consistent Electrica/Thermal HBT
Model”, BCTM Proc., 1992, pp.200-203.

[24] B. Jalali, S.J. Pearton, “InP HBTs: Growth, Processing, and
Applications”, Artech House, p405.

[25] N. Bovolon, P. Baureis, J. –E. Muller, P.Zwicknagl, R. Schultheis, and
E. Zanoni, “A Simple Method for The Thermal Resistance Measurement of
AlGaAs/GaAs HBT”, IEEE Trans. Electron Device, 1998, vol. 45, pp. 1846-
1848.

[26] D. E. Dawson, A. K. Gupta, and M. L. Salib, “CW Measurement of HBT
Thermal Resistance”, IEEE Trans. Electron Device, 1992, vol. 39, pp2235-
2239.

[27] G.. B Gao, M. S. Unlu, H. Markoc, and D. L. Blackbum, “Emitter
ballasting resistor design for, and current handling capability of
AlGaAs/GaAs power HBT”, IEEE Trans. Electron Device, 1991, vol.38,
pp.185-196.

[28] Yang-Hua Chang and Ying-Yih Wu, “MEASUREMENT OF JUNCTION TEMPERATURE IN
HBTs”, 2000, IEEE Third International Caracas Conference on Device,
Circuits and Systems, Mexico, 15-17 March.

[29] G.. Haningtion, C. E. Chang, P. J. Zampardi, and P. M. Asbech, “Thermal
Effect in HBT Emitter Resistance Extraction”, Electronics Letters, 1996,
vol. 32, No.16, pp1515-1516.

[30] W. Liu et at., “Recent Development in GaInP/GaAs heterojunction Bipolar
Transistor”, in Current Trends in Heterojunction Bipolar Transistors,
editor M. F. Chang, World Scientific, pp.280.

[31] 張博淳,2004,VBIC模型應用於異質接面雙載子電晶體之最佳化過程,國立雲林科技
大學,碩士論文。

[32] Y. H. Chang, H. C. Chuang, Y. J. Hsieh, and J. Y. Chen, “Measurement and
Simulation of Substrate Current in InGaP/GaAs Heterojunction Bipolar
Transistors”, IEDMS2002 Proc., pp. 324-327.

[33] McAndrew, C.; Seitchik, J.; Bowers, D.; Dunn, M.; Foisy, M.; Getreu, I.;
McSwain, M.; Moinian, S.; Parker, J.; van Wijnen, P.; Wagner, L,”
VBIC95: An improved vertical, IC bipolar transistor model”, IEEE,
Bipolar/BiCMOS
Circuits and Technology Meeting, 1995., Oct. pp.170 – 177.

[34] Donald A. Neamen, ”Semiconductor Physics AND Device”, McGraw-Hill,
Third Edition,2003, pp.162-165.

[35] Willam Liu, “Handbook of III-V Heterojunction Bipolar Transistors”,
John Wiley & Sons, 1998, pp.693-708.

[36] Willam Liu, “Handbook of III-V Heterojunction Bipolar Transistors”, John
Wiley & Sons, 1998, pp. 708-723.

[37] Willam Liu, “Handbook of III-V Heterojunction Bipolar Transistors”,
John Wiley & Sons, 1998, pp. 133-142.

[38] M. W. Rodwell, M. Urteaga, Y. Beter, P. Krishnan, D. Scott, S.
Jaganathan, D.Mensa, J. Guthrie, R. Pullela, Q. Lee, B. Agarwal, U.
Bhattacharya, S. Lonf,"Scaling of InGaAs/InAlAs HBTs for High Speed Mixed-
Signal and mm-Wave ICs”, International Journal of High Speed Electronics
and Systems, 2001, vol.11, pp.159-215.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top