(3.238.173.209) 您好!臺灣時間:2021/05/15 16:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張廖元凱
研究生(外文):Yuan-Kai Zhang
論文名稱:低複雜度模糊濾波渦輪等化器
論文名稱(外文):Low-complexity Fuzzy-Filter-Assisted Turbo Equalization
指導教授:連振凱連振凱引用關係
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:64
中文關鍵詞:等化器模糊濾波輻射基底函數最大事後機率法則
外文關鍵詞:equalizerfuzzy-filterradial basis functionMAP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
渦輪等化器(Turbo Equalizer, TEQ)可有效的對抗碼際干擾(InterSymbol Interference, ISI)和多重路徑雷利衰減通道,我們已知目前有使用線性等化器(Linear Equalizer, LE)、對數最大事後機率(Logarithm Max a-posteriori, Log-MAP)演算法、軟輸出維特比(Soft Output Viterbi Algorithm, SOVA)演算法、輻射基底函數(Radial Basis Function, RBF)…等來實現等化器。在輻射基底函數等化器中,雖然我們已知其效能與貝氏等化器的效能為相等的,但是計算複雜度對電路實現而言,是相當高的,雖然我們可以使用Jacobian演算法和決策回饋(Decision feedback)來簡化計算複雜度,但是其計算複雜度在高階數等化器中,加法器仍然會呈現指數成長,並不適用於現實應用中。在本論文中,我們提出了利用模糊濾波器(Fuzzy Filter)來簡化渦輪等化器的複雜度,結合模糊濾波器和對數最大事後機率解碼器,我們稱為“模糊渦輪等化器”,利用不同的會員函數(Membership function),我們可以得到不同的效能。同樣的訊號雜訊比(Signal-to-Noise Ratio, SNR)下,在第一次疊代後,輻射基底渦輪等化器的效能會比模糊渦輪等化器好,經過數次疊代之後,經由觀察我們可以發現,模糊渦輪等化器只要比輻射基底等化器多疊代一次,雖然我們需付出較多的運算量,但是由於整體運算量仍然非常的低,所以我們只要多疊代一次,就可以非常的貼近其效能,但是對於計算複雜度而言,卻有非常多的簡化。
Turbo equalizer (TEQ) was shown to against inter symbol interference (ISI) and multipath Rayleigh fading channel effective. That had been implement using linear filter, Logarithm-Maximum a-posteriori algorithm (Log-MAP), Soft Output Viterbi algorithm (SOVA), and Radial Basis Function algorithm (RBF). In RBF-TEQ, which has high computational complexity, in order to reduce computational complexity, we can use Jacobian logarithmic algorithm and Decision-feedback technology, but in high order equalizer, the number of adder is exponential increase, so the computational complexity still too high for materializing. In this paper, we present fuzzy algorithm to reduce computational complexity. We joint fuzzy-filter equalizer and log-MAP decoder (Fuzzy-TEQ). The fuzzy equalizer is shown to perform close to the Bayesian equalizer (RBF). Using different membership function, we get different performance. However, in first iteration, the RBF-TEQ performance is better than Fuzzy-TEQ . After several iteration, the fuzzy-TEQ just need increase one iteration, the performance will be very close RBF-TEQ, almost same performance, but computational complexity can be reducing effective.
中文摘要
………………………………………………………………… iv
英文摘要 ………………………………………………………………… vi
誌謝 ………………………………………………………………… vii
目錄 ………………………………………………………………… ix
表目錄 ………………………………………………………………… x
圖目錄 ………………………………………………………………… xi
第一章 緒論…………………………………………………………… 1
1.1 前言…………………………………………………………… 1
1.2 等化器(Equalizer)的分類………………………………… 4
1.3 最小均方 (Least mean square)演算法…………………… 7
1.4 衰減通道(Fading channel) ………………………………… 10
第二章 錯誤更正碼(Error Correction Code, ECC) ……………… 13
2.1 遞迴系統迴旋碼(Recursive Systematic Code, RSC)編碼器………………………………………………………………
13
2.2 最大事後機率(Maximum a-posteriori, MAP)解碼器………… 15
2.3 對數最大事後機率(Log-Maximum a-posteriori, Log-MAP)解碼器……………………………………………………………
18
第三章 輻射基底函數(Radial Basis Function)…………………… 20
3.1 前言…………………………………………………………… 20
3.2 輻射基底函數架構…………………………………………… 20
3.3 輻射基底等化器……………………………………………… 22
第四章 模糊系統(Fuzzy system)…………………………………… 26
4.1 前言…………………………………………………………… 26
4.2 模糊等化器…………………………………………………… 28
第五章 渦輪等化器(Turbo equalizer)…………………………… 23
5.1 前言…………………………………………………………… 30
5.2 輻射基底渦輪等化器………………………………………… 32
5.3 模糊渦輪等化器……………………………………………… 35
5.4 利用Decision Feedback來簡化複雜度…………………… 37
5.5 Jacobain RBF-TEQ & Fuzzy-TEQ複雜度比較……………… 40
第六章 模擬結果……………………………………………………… 43
第七章 結論…………………………………………………………… 49
參考文獻 ………………………………………………………………… 52
[1]S. U. H. Qureshi, “Adaptive equalization,” Proc. IEEE, vol. 73, pp. 1349-1387, 1985.

[2]B. Mulgrew and C. F. N. Cowan, Adaptive Filter and Equalisers. Boston, MA: Kluwer Academic, 1988.

[3]D. F. Specht, “Generation of polynomial discriminant functions for pattern recognition,” IEEE Trans. Electron. Comput.,vol. EC-16, pp. 308-319, 1967.

[4]R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis. New York: Wiley, 1973.

[5] Chen, B. Mulgrew, and P. M. Grant, “A clustering technique for digital communication channel equalization using radial basis function network,” IEEE Trans. Neural Networks, vol. 4, pp. 570-579, July 1993.

[6]L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal decoding of linear codes for minimizing symbol error rate", IEEE Trans. Inform.Theory, vol. 20, pp. 284-287, Mar 1974

[7]P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain,” in Proc. Int. Conf. Communications, pp. 1009-1013, June 1995.

[8]S. K. Patra and B. Mulgrew, “Efficient architecture for Bayesian equalization using fuzzy filters,” IEEE Trans. Circuits Syst. II, vol. 45, pp. 812–820, July 1998.

[9]C. Douillard, M. Jézéqual, and C. Berrou, “Iterative correction of intersymbol interference: turbo equalization,” Eur. Trans. Telecommun., vol. 6, pp.507-511, Sept./Oct. 1995.

[10]S. Chen, B. Mulgrew, and S. Mc Laughlin, “Adaptive Bayesian Equalizer with Decision Feedback”, IEEE. Transactions on Signal Processing, vol. 41, No. 9, September 1993.

[11]A. Klein, R. Pirhonen, J. Sköld, and R. Suoranta, “FRAMES multiple access mode 1—wideband TDMA with and without spreading,” in Proc. PIMRC’97, Sept. 1997, pp. 37–41.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top