(3.238.130.97) 您好!臺灣時間:2021/05/09 04:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:宋曉潔
研究生(外文):Hsiao-Chieh Sung
論文名稱:奈米碳管之催化與特性研究
論文名稱(外文):Study on the Catalysis and Properties of the Carbon Nanotubes
指導教授:林堅楊林堅楊引用關係
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:155
中文關鍵詞:奈米碳管金屬催化劑氧化矽原子力場顯微鏡高分辨穿透式電子顯微鏡熱重量分析儀
外文關鍵詞:carbon nanotubesmetal catalystsilicon oxidizeAFMHRTEMTGA
相關次數:
  • 被引用被引用:2
  • 點閱點閱:100
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以高溫氧化爐管生長不同厚度之SiO2作為奈米碳管生長之緩衝層,再藉由熱蒸鍍機系統沉積5nm厚度金屬催化劑(鐵、鈷、鎳)薄膜在(無、32nm、54nm、66nm)SiO2/Si基板上,研究發現 (1) SiO2厚度決定奈米碳管的成長,SiO2厚度不足,金屬催化劑容易與基板形成鍵結強大的矽合金造成奈米碳管無法成長。(2) 金屬催化劑島狀顆粒大小隨著SiO2厚度增加而變大。藉由AFM、HRTEM與EDS觀測金屬催化劑/ SiO2/ Si基板之橫截面。此外,將奈米碳管以硫酸跟硝酸混合溶液震盪處理,以HRTEM與TGA分析,發現 (1) 奈米碳管在相同處理時間下硫酸與硝酸的比例不同會造成奈米碳管結構改變,在單純只有硝酸溶液下即會對奈米碳管有短化的影響;但是反應的時間必須加長。而加入硫酸為輔助的功能。(2) 奈米碳管在相同的硫酸與硝酸比例不同處理時間,奈米碳管結構破壞短化的現像隨著處理的時間增加而更加明顯。(3) 對於管徑越細的奈米碳管,其結構越容易被破壞。
Experiment this oxidize with high temperature boiler tube grow different SiO2 of thickness as carbon nanotubes in charge of buffer layer that grow, and Thermal Evaporator deposit metal catalyst including the iron, cobalt , nickel of 5nm thickness The membrane is on SiO2/Si base ( zero , 32nm , 54nm , 66nm), research that it influences it with the material of the metal catalyst membrane that the catalyst is distributed density and grain size and will receive SiO2 thickness, It is all different that SiO2 of different thickness will make the metal catalyst adhere to ability . There is better adhering to ability on the base plate without SiO2 to use the iron catalyst, it is relatively good that the cobalt increases it and adheres to ability with SiO2 thickness, it is being relatively bad that the nickel is having no SiO2 to adhere to ability when buffer layer. Observe the metal catalyst / the cross section of SiO2/ Si base plate with AFM, HRTEM and EDS. In addition, shake CNT deal with sulfuric acid and nitric acid mix solution, with HRTEM and TGA analysis, find(1) sulfuric acid and nitric acid different from proportion of will cause CNT structure to change, CNT will have influence of shortened only under nitric acid solution in the simplicity; But the time to react must be extended. And join sulfuric acid as the auxiliary function. (2)CNT deals with time in the same proportion sulfuric acid and nitric acid, CNT structure destroys shortened is more obvious as the time to deal with increases. (3)CNT the more thinner to the diameter, the easier to be destroyed its structure.
中文摘要………………………………………………………………………….i
英文摘要…………………………………………………………………………ii
誌謝……………………………………………………………………………...iv
目錄………………………………………………………………………………v
表目錄………………………………………………………………………….viii
圖目錄…………………………………………………………………………..ix

第一章 緒論……………………………………………………………………...1
1-1 前言……………………………………………………………………….…1
1-2 本研究之目的……………………………………………………………….2

第二章 理論基礎與文獻回顧…………………………………………………...4
2-1 發展歷史…………………………………………………………………….4
2-2 奈米碳管之結構……………………………………………….……………5
2-3 奈米碳管之合成方式……………………………………………………….6
2-3-1 電弧放電法…………………………………………………………..6
2-3-2 雷射蒸鍍法…………………………………………………………..6
2-3-3 化學氣相沈積(CVD)法……………………………………………...7
2-4 奈米碳管之生長機制……………………………………………………….7
2-4-1 金屬催化方式………………………………………………………..8
2-4-2 奈米碳管生長方式…………………………………………………..8
2-4-3 竹結狀奈米碳管……………………………………………………..9
2-5 催化劑、緩衝層與基板之交互作用…………….…………………………10
2-5-1 催化劑對奈米碳管成長的影響……………………………………12
2-5-2 緩衝層對奈米碳管成長的影響……………………………………13
2-5-3 實際範例……………………………………………………………14
2-6 奈米碳管之純化………………………………….………………………..19
2-6-1 多層壁奈米碳管之純化……………………………………………20
2-6-2 單層壁奈米碳管之純化……………………………………………21

第三章 實驗方法與步驟………………………….……………………………23
3-1實驗摘要……………………………………………………………………23
3-2 實驗藥品與耗材…………………………………………………………...23
3-3 主要之儀器設備…………………………………………………………...27
3-4 實驗步驟與流程…………………………………………………………...31
3-4-1 氧化層之生長………………………………………………………32
3-4-2 金屬催化劑之沉積…………………………………………………32
3-4-3 退火處理……………………………………………………………32
3-4-4 AFM表面粗糙度之分析……………………………………………33
3-4-5 TEM試片製做與研磨………………………………………………33
3-4-6 HRTEM檢測與EDS元素分析….………………………………….36
3-4-7 奈米碳管在混合的酸性溶液處理…………………………………36
3-4-8 短化奈米碳管之HRTEM分析……..………………………………37
3-4-9 熱重量分析儀(TGA)分析………………………………………….37

第四章 結果與討論…………………………………………………………….38
4-1金屬催化劑薄膜沈積試片經退火處理後之AFM分析………………...…39
4-1-1 Fe金屬催化劑……………………………………………………….39
4-1-2 Co金屬催化劑………………………………………………………39
4-1-3 Ni金屬催化劑……………………………………………………….39
4-2 研磨試片之HRTEM檢測與EDS元素分析……………………..………..40
4-2-1 Fe金屬催化劑……………………………………………………….40
4-2-2 Co金屬催化劑………………………………………………………41
4-2-3 Ni金屬催化劑……………………………………………………….42
4-3短化奈米碳管之HRTEM分析……………………….…………………….43
4-3-1 未處理的奈米碳管…………………………………………………43
4-3-2 不同的硫酸與硝酸比例……………………………………………44
4-3-3 不同的處理時間……………………………………………………44
4-3-4 不同管徑大小的奈米碳管…………………………………………44
4-3-5 電子繞射的影像……………………………………………………44
4-4熱重量分析儀(TGA)分析……………………………..……………………45
4-4-1 未處理的奈米碳管…………………………………………………45
4-4-2 不同的硫酸與硝酸比例……………………………………………45
4-4-3 不同的處理時間……………………………………………………46
4-4-4 不同管徑大小的奈米碳管…………………………………………46

第五章 結論…………………………………………………………………….47
參考文獻………………………………………………………………………..48
[1] Sumio Iijima, 1991, “Helical microtubes of graphitic carbon”, Nature, Vol. 354, pp. 56–58.
[2] M. Meyyappan, 2005, “Carbon nanotubes :science and applications”, CRC Press, pp. 25–26.
[3] Ebbesen Thomas W., 1997, “Nanotubes, nanoparticles, and aspects of fullerene related carbons”, J. Phys. Chem. Solids, Vol. 58, No. 11, pp. 1979–1982.
[4] M. Ishigami, John Cumings, A. Zettl, S. Chen, 2000, “A simple method for the continuous production of carbon nanotubes”, Chemical Physics Letters, Vol. 319, pp. 457–459.
[5] N. Nagaraju, A. Fonseca, Z. Konya, J.B. Nagy, 2002, “Alumina and silica supported metal catalysts for the production of carbon nanotubes”, Journal of Molecular Catalysis, Vol. 181, pp. 57–58.
[6] 劉士瑜,2004,”奈米碳管之催化生長及其特性研究”,國立雲林科技大學電子工程研究所碩士論文。
[7] Peter J. F., Harris, 1999, “Carbon Nanotubes And Related Structures (New Materials for the Twenty-first Century)”, Cambridge University Press, pp. 1–15.
[8] 許明發,郭文雄,2003,”奈米碳管科技”,國興出版社,PP. 1–15。
[9] Sumio Iijima, 2002, “Carbon nanotubes: past, present, and future”, Physica B , Vol. 323, pp. 1–5.
[10] Dresselhaus M. S., G. Dresselhaus, P.C. Eklund, Academic press, 1997, “Science of fullerences and carbon nanotubes” , Carbon, Vol. 35, No. 3, pp. 437–438.
[11] M. S. Dresselhaus, G. Dresselhaus, R. Saito, 1995, “Physics of carbon nanotubes”, Carbon, Vol. 33, No. 7, pp. 883–891.
[12] Juthika Basak, Deepanjan Mitra, Shashank Sinha, 2002, “Carbon Nnotubes (CNTs): The Next Generation Sensors”, Sensors and Actuators, MAE 284, pp. 2–4.
[13] Dresselhaus MS, Dresselhaus G, and Saito R, 1995, “Physics of carbon nanotubes”, Carbon. Vol. 33, pp. 883–891.
[14] Hongjie Dai, M. S. Dresselhaus, G. Dresselhaus, 2001, “Nanotube Growth and Characterization”, Carbon Nanotubes, Topics Appl. Phys., Vol. 80, pp. 29–53.
[15] T. Guo, P. Nikolaev, D. T. Colbert, R. E. Smalley, 1995, “Catalytic growth of single-walled nanotubes by laser vaporization”, Chemical Physics Letters, Vol. 243, pp. 49–54.
[16] Morinobu Endo, Riichiro Saito, Mildred S. Dresselhaus, G. Dresselhaus, 1997, “From Carbon Fibers to Nanotubes”, Carbon Nanotubes Preparation and Properties, CRC Press, pp. 54–56.
[17] L. P. Biro, C. A. Bernardo, G. G. Tibbetts, Ph. Lambin, 2001, “Carbon Filaments and Nanotubes: Common Origins, Differing Applications?”, NATO Science Series, Vol. 372, pp. 85–109.
[18] Satio Yahachi, 1995, “Nanoparticles and filled nanocapsules”, Carbon, Vol. 33, No. 7, pp. 979–988.
[19] Dingyong Zhong, Shuang Liu, Guangyu Zhang, E. G. wang, 2001, “Large-scale well aligned nitride nanotube films: Low temperature growth and electron field emission”, Journal of App. Phy., Vol. 89, No. 11, pp. 5939–5943.
[20] Yahachi Saito, 1997, “Nanoparticles and Nanocapsules”, Carbon Nanotubes Preparation and Properties, CRC Press, pp. 267–271.
[21] Cheol Jin Lee, Jung Hoon Park, Jeunghee Park, 2000, “Synthesis of bamboo-shaped multiwalled carbon nanotubes using thermal chemical vapor deposition”, Chemical Physics Letters, Vol. 323 pp. 560–565.
[22] Morinubo Endo, Sumio Iijima, Mildred S. Dresselhaus, 1996, “Carbon Nanotube”, PerGamon, pp.153–167.
[23] 郭正次、朝春光,2004, “奈米結構材料的製造方法”,奈米材料結構科學,全華科技圖書股份有限公司,P 8-15– P8-21。
[24] Hui Lin Chang, Cheng Tzu Kuo, 2001, “Characteristics of Si-C-N films deposited by microwave plasma CVD on Si wafers with various buffer layer materials”, Diamond and Related Materials, Vol. 10, pp. 1910–1915.
[25] Hui Lin Chang, Cheng Tzu Kuo, 2001, “Properties of Si-C-N films prepared on Si substrate using cobalt interfacial layers”, Materials Chemistry and Physics, Vol. 72, pp. 236–239.
[26] C.T. Kuo, L.C. Chen, K.H. Chen, T.M. Chen, T.R. Lu, 1999, “Effect of target materials on crystalline carbon nitride film preparation by ion beam sputtering”, Diamond and Related Materials, Vol. 8, pp. 1724–1729.
[27] Chii Ruey Lin, Cheng Tzuo Kuo, Ruey Ming Chang, 1998, “Improvement in adhesion of diamond films on cemented WC substrate with Ti–Si interlayers”, Diamond and Related Materials, Vol. 7, pp. 1628–1632.
[28] C.R. Lin, C.T. Kuo, 1998, “Improvement of mechanical properties of electroplated diamond tools by microwave plasma CVD diamond process”, Surface and Coatings Technology, Vol. 110, pp. 19–23.
[29] Chii Ruey Lin, Cheng Tzu Kuo, 1998, “High adhesion and quality diamond films on steel substrate”, Diamond and Related Materials, Vol. 7, pp. 903–907.
[30] Chao Hsun Lin, Hui Lin Chang, Ming Her Tsai, Cheng Tzu Kuo, 2002, “Growth mechanism and properties of the large area well-aligned carbon nano-structures deposited by microwave plasma electron cyclotron resonance chemical vapor deposition”, Diamond and Related Materials, Vol. 11, pp. 922–926.
[31] L.C. Chen, K.H. Chen, S.L. Wei, P.D. Kichambare, J.J. Wu, T.R. Lu, C.T. Kuo, 1999, “Crystalline SiCN: a hard material rivals to cubic BN”, Thin Solid Films, Vol. 355–356, pp. 112–116.
[32] T.R. Lu, L.C. Chen, K.H. Chen, D.M. Bhusari, T.M. Chen, C.T. Kuo, 1998, “Sputtering process of carbon nitride Ælms by using a novel bio-molecular C-N containing target”, Thin Solid Films, Vol. 332, pp. 74–79.
[33] Ebbesen Thomas W., 1995, “Wetting, filling and decorating carbon nanotubes”, J. Phys. Chem. of Solid, Vol. 57, No. 6–8, pp. 951–955.
[34] Cheol Jin Lee, Jeunghee Park, Seung Youl Kang, Jin Ho Lee, 2000, “Growth and field electron emission of vertically aligned multiwalled carbon nanotubes”, Chemical Physics Letters, Vol. 326, pp. 175–180.
[35] Hui Lin Chang, Chao Hsun Lin, Cheng Tzu Kuo, 2002, “Field emission, structure, cathodoluminescence and formation studies of carbon and Si-C-N nanotubes”, Diamond and Related Materials, Vol. 11, pp. 793–798.
[36] T. de los Arcos, Z.M. Wu, P. Oelhafen, 2003, “Is aluminum a suitable buffer layer for carbon nanotube growth ?”, Chemical Physics Letters, Vol. 380, pp. 419–423.
[37] Teresa de los Arcos, M. Gunnar Garnier, Peter Oelhafen, Daniel Mathys, Jin Won Seo, Concepci_on Domingo, Jose Vicente Garca-Ramos, Santiago Sanchez-Cortes, 2004, “Strong influence of buffer layer type on carbon nanotube characteristics”, Carbon, Vol. 42, pp. 187–190.
[38] Teresa de los Arcos, Michael Gunnar Garnier, Jin Won Seo, Peter Oelhafen, Verena Thommen, Daniel Mathys, 2004, “The Influence of Catalyst Chemical State and Morphology on Carbon Nanotube Growth”, J. Phys. Chem. B, Vol. 108, pp. 7728–7734.
[39] Anyuan Cao, P. M. Ajayan, G. Ramanatha, R. Baskaran,K. Turner, 2004, “Silicon oxide thickness-dependent growth of carbon nanotubes”, Appl. Phys. Lett., Vol. 84, pp. 109–111.
[40] F. Maeda, E. Laffosse, Y. Watanabe, S. Suzuki, Y. Homma, M. Suzuki, T. Kitada, T. Ogiwara, A. Tanaka, M. Kimura, V.A. Mihai, H. Yoshikawa, S. Fukushim, 2004, “Surface and interface reactions of catalysts for carbon nanotube growth on Si substrates studied by soft X-ray photoelectron spectroscopy”, Physica E, Vol. 24, pp. 19–25.
[41] Chih Ming Hsu, Chao Hsun Lin, Hong Jen Lai, Cheng Tzu Kuo, 2005, “Root growth of multi-wall carbon nanotubes by MPCVD”, Thin Solid Films, Vol. 471, pp. 140– 144.
[42] Jae-hee Han, Ha Jin Kim, Min-Ho Yang, Cheol Woong Yang, Ji-Beom Yoo, Chong-Yun Park, Yoon-Ho Song, Ki-Soo Nam, 2001, “Effects of thickness of Ni layer deposited on glass substrate on the growth and emission properties of carbon nanotubes”, Materials Science and Engineering C, Vol. 16, pp. 65–68.
[43] A.C. Wright, Y. Xiong, N. Maung, S.J. Eichhorn, R.J. Young, 2003, “The influence of the substrate on the growth of carbon nanotubes from nickel clusters—an investigation using STM, FE-SEM, TEM and Raman spectroscopy”, Materials Science and Engineering C, Vol. 23, pp. 279–283.
[44] 成會明,張勁燕,2004,”奈米碳管 Carbon Nanotubes”,五南圖書出版,PP. 138。
[45] T. W. Ebbesen, P. M. Ajayan, H. Hiura and K. Tanigaki, 1994, “Purification of carbon nanotubes”, Nature, Vol. 367, pp. 519.
[46] Kazuyuki Tohji, Takashi Goto, Hideyuki Takashi, Yasushi Shinoda, Nobutaka Shimizu, Balachandran Jeyadevan, Isao Matsuoka, 1996, “Purifying single-walled nanotubes”, Nature, Vol. 383, pp. 679.
[47] Shelimov, Konstantin B.; Esenaliev, Rinat O.; Rinzler, Andrew G.; Huffman, Chad B.; Smalley, Richard E., 1998, “Purification of single-wall carbon nanotubes by ultrasonically assisted filtration”, Chemical Physics Letters, Vol. 282, pp. 429-434.
[48] Duesberg, G.S.; Blau, W.; Byrne, H.J.; Muster, J.; Burghard, M.; Roth, S., 1999, “Chromatography of carbon nanotubes”, Synthetic Metals, Vol. 103, pp. 2484-2485.
[49] T. Saito, K. Matsushige, K. Tanaka, 2002, “Chemical treatment and modification of multi-walled carbon nanotubes”, Physica B, Vol. 323, pp. 280-283.
[50] C.G. Hu, W.L. Wang, K.J. Liao, G.B. Liu, Y.T. Wang, 2004, “Systematic investigation on the properties of carbon nanotube electrodes with different chemical treatments”, Journal of Physics and Chemistry of solids, Vol. 65, pp. 1731-1736.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔