(3.238.130.97) 您好!臺灣時間:2021/05/14 00:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:劉正信
研究生(外文):Cheng-Hsin Liu
論文名稱:以前端偏移補償電路降低生物感測器非理想效應之研究
論文名稱(外文):Study of Reducing Non-ideal Effects Based on Biosensor with Front-End Offset Circuit
指導教授:周榮泉周榮泉引用關係
指導教授(外文):Jung Chuan Chou
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:93
語文別:中文
論文頁數:144
中文關鍵詞:穩定度前端偏移補償電路時漂效應遲滯效應延伸式閘極離子場效電晶體
外文關鍵詞:EGISFETDrift effectHysteresis effectPre-front offset circuitStability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
延伸式閘極離子感測場效電晶體(Extended Gate Ion Sensitive Field Effect Transistor, EGISFET)之發展係源自離子感測場效電晶體(Ion Sensitive Field Effect Transistor, ISFET),其具有許多之優點,如擁有低成本、構造較ISFET簡單,且將離子感測膜由場效電晶體之閘極分離出來,解決ISFET於標準製程下之封裝問題。ISFET雖具有許多優點,但仍具有許多非理想之效應,如溫度效應、遲滯(hysteresis)效應、時漂(drift)效應等,而EGISFET與ISFET於結構上相似,故其亦具有相同ISFET之非理想效應,對感測元件商品化之進程是一大阻礙,故需利用電路或更佳之製程條件以提高元件之穩定度與可靠性。而時漂於整個量測過程中皆隨時存在,故造成元件之輸出隨著時間而漂移。本論文對不同製程條件與感測度之關係進行探討,並對元件遲滯、時漂做進一步之研究與模擬,最後藉由前端差動電路與利用偏移電壓補償電位降低時漂效應對元件之影響,且利用所設計之前端偏移補償電壓電路與儀表放大器互相結合下,量測元件之輸出響應,並比較藉由此電路降低時漂效應前後之差異,利用一校正差動電路,以提高感測元件之穩定性與可靠度。
The extended gate ion sensitive field effect transistor (EGISFET) originated from the ion sensitive effect transistor has many advantages, such as low cost, the structure is simpler than the ISFET and the sensitive membrane is separated from the gate of field effect transistor. The packaging of the standard process of the ISFET was solved. Although the ISFET has many advantages, it still has many non-ideal effects such as temperature effect, hysteresis effect, and temporal drift effect. The structure of EGISFET is similar the structure of the ISFET. Moreover, it is the main impediment to development of commercial processes for sensitive devices. It is necessary to promote the stability and reliability of the devices by employing calibration circuits and better fabrication conditions. The temporal drift exists in the entire measurement experiment. The output voltage of the device varies with the time. Furthermore, in this thesis we study the relationship between the sensitivity and the different production conditions. Study and simulate further the hysteresis phenomenon and temporal drift. Reducing the temporal drift effect which would influence the stability of the device with the pre-front offset circuit of differential amplifier. The measurement system combined with the pre-front offset circuit and instrument amplifier measures the output voltage response. We employ the calibration circuit to compare with the variations of the output voltage. Its expectably improves the stability and reliability of the sensitive device by the novel calibration circuit.
目錄

中文摘要……………………………………… I
英文摘要……………………………………… II
誌謝……………………………………………… IV
目錄……………………………………………… V
表目錄…………………………………………… VII
圖目 錄…………………………………………… VIII

第一章 緒論………………………………………… 1
1.1 研究歷史背景………………………………………… 1
1.2 研究動機……………………………………………… 3
1.3 研究流程及架構…………………………………… 4
第二章 理論分析……………………………………………… 9
2.1 pH 定義……………………………………………… 9
2.2 玻璃電極之工作原理………………………………… 10
2.3 pH-ISFET之工作原理………………………………… 11
2.3.1 表面吸附鍵結模型 (Site-Binding Model)……… 11
2.3.2 電雙層結構…………………………………………… 12
2.4 延伸式閘極離子感測電晶體之工作原理…………… 13
2.5 參考電極……………………………………………… 14
2.6 氮化鈦薄膜之型態(Morphology) …………………… 15
2.6.1 氮化鈦薄膜製程與應用……………………………… 15
2.6.2 Pourbaix 圖…………………………………………… 16
第三章 感測元件之備製、封裝與量測……………………… 24
3.1 氮化鈦薄膜之備製…………………………………… 24
3.1.1 濺鍍之前處理………………………………………… 24
3.1.2 氮化鈦薄膜之備製…………………………………… 24
3.1.3 薄膜之製程參數……………………………………… 25
3.1.4 TiN-EGISFET之備製………………………………… 26
3.2 薄膜特性量測系統與電路…………………………… 28
3.3 氮化鈦電極感測度之探討…………………………… 30
3.4 氮化鈦薄膜厚度與TiN-EGISFET感測度之量測……… 32
3.4.1 TiN薄膜厚度之量測…………………………………… 32
3.4.2 量測注意事項………………………………………… 32
3.4.3 TiN-EGISFET感測度之量測…………………………… 33
第四章 非理想效應之研究…………………………………… 57
4.1 遲滯效應之定義與理論分析………………………… 57
4.2 遲滯效應之量測……………………………………… 60
4.3 遲滯之量測結果與討論……………………………… 61
4.3.1 TiN-EGISFET元件之遲滯量測………………………… 61
4.3.2 各種材料遲滯量比較與討論………………………… 61
4.4 時漂之定義與理論分析……………………………… 62
4.4.1 時間響應之基本定義………………………………… 62
4.4.2 時漂之理論探討……………………………………… 63
4.5 時漂效應之實驗……………………………………… 67
4.5.1 時漂效應之量測……………………………………… 67
4.5.2 時間響應與時漂之模擬……………………………… 67
4.6 時漂之量測結果與討論……………………………… 69
第五章 前端偏移差動校正電路之設計與研究……………… 79
5.1 放大器之選擇………………………………………… 79
5.2 前端偏移補償校正電路之操作原理………………… 81
5.3 位移補償電路之設計………………………………… 83
5.4 前端偏移補償校正電路之實驗結果………………… 84
第六章 結果與討論………..………………………………… 97
6.1 氮化鈦薄膜製程之討論……………………………… 97
6.1.1 氮化鈦薄膜最佳製程參數…………………………… 97
6.1.2 TiN-EGISFET感測元件之酸鹼感測度比較………… 97
6.2 非理想效應之結果與討論…………………………… 99
6.2.1 遲滯效應……………………………………………… 99
6.2.2 時漂效應……………………………………………… 99
6.3 前端偏移補償校正電路與國內外期刊論文之比較… 101
第七章 結論…………………………………………………… 116
第八章 未來展望……………………………………………… 117
參考文獻 ………………………………………………………… 118
口試委員之問題與回答 …………………………………………126
附錄一 投稿論文 ……………………………………………… 133
附錄1.1 2004生物醫學工程研討會……………………… 133
附錄1.2 第十二屆奈米元件技術研討會……………………… 135
附錄1.3 第三屆先進技術材料國際研討會…………………… 137
附錄1.4 第六屆東亞化學感測器國際研討會…………………… 139
附錄二 個人履歷……………………………………………………141
[1]P. Bergveld, 1970, “Development of an Ion Sensitive Solid-State Device for Neurophysiological Measurements”, IEEE Transactions on Biomedical Engineering, BME-17, PP.70-71.

[2]A. TopKar, R. Lal, 1993, “Effect of Electrolyte Exposure on Silicon Dioxide in Electrolyte-Oxide-Semiconductor Structures”, Thin Soild Films, Vol. 232, PP.265-270.

[3]B. D.Liu, Y. K. Su, S.C. Chen, 1989, “Ion-Sensitive Field –Effect Transistor with Silicon Nitride Gate for pH Sensing”, Int. J. Electronics, Vol.67, PP.59-63.

[4]A. Garde, J. Alderman, W. Lane, 1995, “Development of a pH-Sensitive ISFET Suitable for Fabrication in a Volume Production Environment”, Sensors and Actuators B, Vol. 26-27, PP.341-344.

[5]D. L. Harame, L. J. Bousse, J. D. Shott, J. D. Meindl, 1987, “Ion-Sensing Devices with Silicon Nitride and Borosilicate Glass Insulators”, IEEE Transactions on Electron Devices, Vol. ED-34, PP.1700-1707.

[6]M. N. Niu, X. F. Ding, Q. Y. Tong, 1996, “Effect of Two Types of Surface Sites on the Characteristics of Si3N4-Gate pH-ISFETs”, Sensors and Actuators B, Vol. 37, PP.13-17.

[7]Chih Ming Sue, Hung Kwei Liao, Jung Chuan Chou. Wen Yaw Chung, Tai Ping Sun, Shen Kan Hsiung, 1997, “Study on Si3N4/SiO2 Gate Ion Sensitive Field Effect Transistor”, Proceedings of The 1997 Electron Devices and Materials Symposium (EDMS), National Central University, Chung-Li, Taiwan, R.O.C., PP.383-386.

[8]Hung Kwei Liao, Jung Chuan Chou. Wen Yaw Chung, Tai Ping Sun, Shen Kan Hsiung, 1997, “Study on the Interface Trap Density of the Si3N4/SiO2 Gate ISFET”, Proceedings of The 3rd International East Asian Conference on Chemical Sensors, Hoam Convention Center, Seoul National University, Seoul Korea, November 5-6, PP.394-400.

[9]Chung Lin Wu, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun, Shen Kan Hsiung, 1999, “Study on SnO2/Al/SiO2/Si ISFET with a Metal Light Shield”, Materials Chemistry and Physics, Vol. 63, PP.153-156.

[10]楊恩旭,1998,二氧化錫薄膜應用於離子感測場效電晶體之研究,中原大學電子工程研究所,碩士論文。

[11]Hung Kwei Liao, Li Lun Chi, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun, Shen Kan Hsiung, 1999, “Study on pHPZC and Surface Potential of Tin Oxide Gate ISFET”, Materials Chemistry and Physics, Vol. 59, PP.6-11.

[12]Hung Kwei Liao, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun, Shen Kan Hsiung, 1999, “Temperature and Optical Characteristics of Tin Oxide Membrane Gate ISFET”, IEEE Transactions on Electron Devices, Vol. 46(12), PP.2278-2281.

[13]Hung Kwei Liao, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun, Shen Kan Hsiung, 2000, “The Influence of Isothermal Annealing on Tin Oxide Thin Film for pH-ISFET Sensor”, Sensors and Actuators B, Vol. 65, PP.23-25.

[14]Jung Chuan Chou, Chen Yu Weng, Hsjian Ming Tasi, 2002, “Study on the Temperature Effects of Al2O3 Gate pH-ISFET”, Sensors and Actuators B, Vol.81, PP.152-157.

[15]L. Bousse, H. H Van Der Vlekkert, N. F. De Rooij, 1990, “Hysteresis in Al2O3-Gate ISFETs”, Sensors and Actuators B, Vol. 2, PP.103-110.

[16]D. H. Kwon, B. W. Cho, C. S. Kim, B. K. Sohn, 1996, “Effect of Heat Treatment on Ta2O5 Sensing Membrane for Low Drift and High Sensitivity pH-ISFET”, Sensors and Actuators B, Vol.34, PP.441-445.

[17]Jung Chuan Chou, Ying Shin Li, Jung Lung Chiang, 2000, “Simulation of Ta2O5 Gate ISFET Temperature Characteristics”, Sensors and Actuators B, Vol. 71, PP.73-76.

[18]Jung Chuan Chou, Kai Ye Huang, Jin Sung Lin, 2000, “Simulation of Time Dependent Effects of pH-ISFETs”, Sensors and Actuators B, Vol. 62, PP.88-91.

[19]G. R. Fox, D. Damjanovic, 1997, “Electrical Characterization of Sputter-Deposited ZnO Coatings on Optical Fibers”, Sensors and Actuators A Vol. 63, PP.153-160.

[20]S. Basu, A. Dutta, 1997, “Room Temperature Hydrogen Sensors Based on ZnO”, Materials Chemistry and Physics Vol. 47, PP.93-96.

[21]Hyun Wool Ryu, Bo Seok Park, Sheikh A. Akbar, Woo Sun Lee, Kwang Jun Hong, Youn Jin Seo, Dong Charn Shin, Jin Seong, Jin Seong Park, Gwang Pyo Choi, 2003, “ZnO Sol-Gel Derived Porous Film for CO Gas Sensig”, Sensor and Actuators B, Vol. 96, PP.717-722.

[22]Jung Chuan Chou, Ching Nan Hsiao, 2000, “The Hysteresis and Drift Effect of Hydrogenated Amorphous Silicon for ISFET Sensor”, Sensors and Actuators B, Vol. 66, PP.181-183.

[23]Jung Chuan Chou, Ching Nan Hsiao, 2000, “Drift Behaviour of ISFETs with A-Si:H-SiO2 Gate Insulator”, Materials Chemistry and Physics, Vol. 63(3) , PP.270-273.

[24]Jung Chuan Chou, Yii Fang Wang, Jin Sung Lin, 2000, “Temperature Effect of A-Si:H pH-ISFET”, Sensors and Actuators B, Vol. 62, PP.92-96.

[25]Jung Chuan Chou, Yii Fang Wang, 2001, “Temperature Characterisitcs of A-Si:H Gate ISFET”, Materials Chemistry and Physics, Vol. 70, PP.107-111.

[26]Jung Chuan Chou, Hsjian Ming Tasi, Ching Nan Hsiao, Jin Sung Lin, 2000, “Study and Simulation of the Drift Behaviour of Hydrogenated Amorphous Silicon Gate pH-ISFET”, Sensors and Actuators B, Vol. 62, PP.97-101.

[27]I-Yu Huang, Ruey-Shing Huang, 2002, “Fabrication and Characterization of a New Planar Solid-State Reference”, Thin Solid Films, Vol. 406, PP.255-261.
[28]S. D. Collins, 1993, “Practical Limits for Solid-State Reference Electrodes”, Sensors and Actuators B, Vol. 10, PP.169-178.

[29]Yuri G. Vlasov, Andrey V. Bratov, 1992, “Analytical Applications of pH-ISFETs”, Sensors and Actuators B, Vol.10, PP.1-6.

[30]C. Diekmann, C. Dumschat, K. Cammann, M. Knoll, 1995, “Disposable Reference Electrode”, Sensors and Actuators B, Vol. 24-25, PP.276-278.

[31]Chae Hyang Lee, Hwa Il Seo, Young Chul Lee, Byung Woog Cho, Hoon Jeong, Byung Ki Sohn, 2000, “All Soild Type ISFET Glucose Sensor with Fast Response and High Sensitivity Characteristics”, Sensors and Actuators B, Vol. 64, PP. 37-41.

[32]Xi Liang Luo, Jing Juan Xu, Wei Zhao, Hong Yuan Chen, 2004, “Glucose Biosensor Based on ENFET Doped with SiO2 Nanoparticles”, Sensors and Actuators B, Vol. 97, PP. 249-255.

[33]Jianguo Liu, Li Liang, Gaoxiang Li, Rushui Han, Keming Chen, 1998, “H+ ISFET Based Biosensor for Determination of Penicillin G”, Biosensors and Bioelectronics, Vol. 13, PP.1023-1028.

[34]M. J. Schoning, M. Thust, M. Muller Veggian, P. Kordos, H. Kordos, H. Luth, 1998, “A Novel Silicon Based Sensor Array with Capacticive EIS Structures”, Sensors and Actuators B, Vol. 47, PP.225-230.

[35]J. Van der Spiegel, I. Lauks, P. Chan D. Babic, 1983, “The Extended Gate Chemical Sensitive Field Effect Transistor as Multi-Species Microprobe”, Sensor and Actuators B, Vol.4, PP.291-298.

[36]Jung Lung Chiang, Jung Chuan Chou, Ying Chung Chen, 2001, “Study of the pH-ISFET and ENFET for Biosensor Applications”, Journal of Medical and Biological Engineering, Vol. 21(3), PP.135-146.

[37]鍾與采、趙守安、劉濤,1994,“pH-ISFET輸出時漂特性之研究”,半導體學報,第15卷,第12期,PP.838-843。

[38]Rilbe H., 1996, “pH and Buffer Theory-A New Approach”, Willey Series in Solution Chemistry, PP.1.

[39]Cobbold, Richard S.C., 1973, “Transducers for Biomedical Measurement”, John Wiley, New York.

[40]Ramsey L. H., 1959, “Analysis of Gas in Biological Fluids by Gas Chromatography”, Science, Vol. 129, PP.900.

[41]Moore E. W., Wilson D. W., 1963, “The Determination of Sodium in Body Fluids by the Glass Electrode”, J. Clin. Invest., Vol. 42, PP.293.

[42]Eisenman G., Rudin, D.O., Gasby J.U., 1957, “Galss Electrode for Measuring Sodium Ion”, Science, Vol. 126, PP.831.

[43]Zachariasen W. H., 1932, “The Atomic Arrangement in Glass”, J. Am. Chem. Soc., Vol. 54, PP.3841.

[44]Eisenman G., 1967, “Glass Electrodes for Hydrogen and Other Cations”, Macel Dekker, New York.

[45]D. E. Yates, S. Levine, T. W. Healy, 1974, “Site-Binding Model of the Electrical Double Layer at the Oxide/Water Interface”, J. Chem. Soc. Faraday Trans. I, Vol. 70, PP. 1807-1818.

[46]E. Gileadi, E. Kirowa Eisner, J. Penciner, 1975, “Interfacial Electro- chemistry, An Experimental Approach”, Addison Wesley Publish Company, INC., PP4-6.

[47]J. Janata, 1983, “Electrochemistry of Chemically Sensitive Field Effect Transistors”, Sensors and Actuators B, Vol. 4 PP.255-265.

[48]楊藏嶽、楊慶成,1992,電化學及應用,第一章和第三章,中國電機工程學會,台北市。

[49]吳溪煌、田福助,1997,電化學理論與應用,第三章,高立圖書有限公司,台北市。

[50]吳浩青、李永舫,電化學動力學,科技圖書股份有限公司,第八章。

[51]Thornton, Jong A., 1974, “Influence of Apparatus Geometry and Deposition Conditions on Structure and Topography of Thick Sputtered Coatings”, Journal of Vacuum Science Technology, Vol. 11(4), PP.666-670.

[52]Young Ki Lee, Jung Yeul Kim, You Kee Lee, Min Sang Lee, Dong Kun Kim, Duck Yong Jin, Tae Hyun Nam, Hyo Jun Ahn, Dong Koo Park, 2002, “Surface Chemistry of Non-Stoichiometric TiNX Films Grown on (100) Si Substrate by DC Reactive Magnetron Sputtering”, Journal of Crystal Growth, Vol. 234, PP.498-504.

[53]莊達仁,2002,VLSI製造技術,高立圖書有限公司,PP.200-203。

[54]Ju Wan Lim, Seung Hoon Lee, Jung Joong Lee, 2003, “Preparation and Properties of Nanoscale Multilayered TiN/AlN Coatings Deposited by Plasma Enhanced Chemical Vapor Deposition”, Surface and Coatings Technology, Vol. 167-170, PP460-463.

[55]Xu Zhang, Xiangying Wu, Zhongzhen Yi, Tonghe Zhang, Huixng Zhang, 2003, “The TiN/AlN Multilayers Deposited by Filtered Vacuum Arc Deposition”, Nuclear Instruments and Methods in Physics Research B, Vol. 206, PP.382-385.

[56]M. A. Auger, O. Sanchez, C. Ballesteros, M. Jergel, M. Aguilar-Frutis, C. Falcony, 2003, “TiN/AlN Bilayers and Multilayers Grown By Magnetron Co-Sputtering”, Thin Solid Films, Vol. 433, PP. 211-216.

[57]Beverskog. B., Puigdomenech. I., 1997, “Revised Pourbaix Diagrams For Zinc at 25~300℃”, Corrosion Science, Vol. 39, PP.107-114.

[58]http://www.if.uidaho.edu/~vutgikar/che504ece/lecture3.PDF

[59]Douglas J. Wood, 1993, “The Characterization of Particulate Debris Obtained from Failed Orthopedic Implants (A Research Report)”, Material Engineering, Vol. 198B, Chapter 5.

[60]邱嘉政,2001,延伸式閘極離子感測場效電晶體穩定度之研究,中原大學電子工程研究所,碩士論文。

[61]黃鴻吉,2002,以TiN靶材濺鍍擴散阻障層TiNx薄膜及其分析,國立台灣科技大學工程技術研究所,碩士論文。

[62]郭曉文,2002,氮化鈦薄膜在Si (111) 基板上磊晶成長,國立清華大學材料科學工程研究所,碩士論文。

[63]Li Te Yin, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun, Shen Kan Hsiung, 2000, “Separate Structure Extended Gate H+ -Ion Sensitive Field Effect Transistor on A Glass Substrate”, Sensors and Actuators B, Vol. 71, PP. 106-111.

[64]Li Te Yin, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun, Shen Kan Hsiung, 2001, “Study of Indium Tin Oxide Thin Film for Separative Extended Gate ISFET”, Materials Chemistry and Physics, Vol. 70, PP.12-16.

[65]http://www.linear.com/prod/datasheet.html?datasheet=437

[66]武士香、虞惇、王貴華,1991,”化學量傳器”,傳感器技術,第一期,PP.56-62.

[67]Ayal Shoval, David A. John, W. Martin Snelgrove, 1992, “Median-Based Offset Cancellation Circuit Technique”, Proceedings of The IEEE International Symposium on Circuits and System, ISCAS’92,. San Diego, CA,10-13, May, Vol. 4, PP.2033-2036.

[68]L. Bousse, S. Mostarshed, B.Van Der Schoot, N. F. De Rooij, 1994, “Comparison of the Hysteresis of Ta2O5 and Si3N4 pH-Sensing Insulators”, Sensors and Actuators B, Vol. 17, PP.157-164.

[69]T. Mikolajick, R. Kuhnhold, H. Ryssel, 1997, “The pH-Sensing Properties of Tantalum Pentoxide Films Fabricated by Metal Organic Low Pressure Chemical Vapor Deposition”, Sensors and Actuators B, Vol. 44, PP.262-267.

[70]L. Bousse, D. Hafeman, N. Tran, 1990, “Time-Dependent of the Chemical Response of Silicon Nitride Surfaces”, Sensors and Actuators B1, PP.361-367.
[71]Jung Lung Chiang, Shiun Sheng Jan, Jung Chuan Chou, Ying Chung Chen, 2001, “Study on the Temperature Effect, Hysteresis and Drift of pH-ISFET Devices Based on Amorphous Tungsten Oxide”, Sensors and Actuators B, Vol. 76, PP. 624-628.

[72]蕭清南,1998,非晶形矽氫與氮化鉭酸鹼離子感測場效電晶體之溫度效應、遲滯和時漂的模擬與研究,國立雲林技術學院電子與資訊工程研究所,碩士論文。

[73]顏志先,2004,氮化鈦離子感測電晶體應用於尿素酵素之量測與積體化前端檢測電路之研究,國立雲林科技大學電子工程研究所,碩士論文。

[74]Yu Dun, Wei Ya Dang, Wang Gui Hua, 1991, “Time-Dependent Response Characteristics of pH-Sensitive ISFET”, Sensors and Actuators B, Vol. 3, PP.279-285.

[75]P. Woias, L. Meixner, P. Frostl, 1998, “Slow pH Response Effects of Silicon Nitride ISFET Sensors”, Sensors and Actuators B, Vol. 48, PP.501-504.

[76]Shahriar Jamasb, Scott D. Collins, Rosemary L. Smith, 1998, “A Physical Model for Threshold Voltage Instability in Si3N4-Gate H+-Sensitive FET’s (pH ISFET’s)”, IEEE Transactions on Electron Devices, Vol. 45, No. 6, PP. 1239-1245.

[77]Shahriar Jamasb, Scott D. Collins, Rosemary L. Smith, 1998, “A Physical Model for Drift in pH-ISFET”, Sensors and Actuators B, Vol. 49, PP.146-155.

[78]Peter Hein, Peter Egger, 1993, “Drift Behavior of ISFETs With Si3N4-SiO2 Gate Insulator”, Sensors and Actuators B, Vol. 13-14, PP.655-656.

[79]黃凱易,1999,非晶形五氧化二鉭酸鹼離子感測場效電晶體時漂與遲滯之模擬與研究,國立雲林科技大學電子系,實務專題報告,PP.46-77。

[80]H. Voigt, F. Schitthelm, T. Lange, T. Kullick, R. Ferretti, 1997, “Diamond Like Carbon Gate pH ISFET”, Sensors and Actuators B, Vol. 44, PP. 441-445.

[81]Tadayuki Matsuo and Masayoshi Esashi, 1981, “Method of ISFET Fabrication”, Sensors and Actuators, 1, pp.77-96.

[82]Roubik Gregorian, 1999, Introduction to CMOS OP-AMPs and Comparators, John Wiley & Sons, Inc., New York.

[83]http://focus.ti.com/lit/ds/symlink/ina134.pdf

[84]http://focus.ti.com/lit/ds/symlink/ina118.pdf

[85]M. Nose, Y. Deguchi, T. Mae, E. Honbo, T. Nagae, K. Nogi, 2003, “Influence of Sputtering Conditions on the Structure and Properties of Ti-Si-N Thin Films Prepared by r.f. Reactive Sputtering”, Surface and Coatings Technology, Vol. 174-175, PP. 261-265.

[86]Yuan Lung Chin, Jung Chuan Chou, Zhen Ce Lei, Tai-Ping Sun, Wen Yaw Chung, Shen Kan Hsiung, 2001, “Titanium Nitride Membrane Application to Extended Gate Field Effect Transistor pH Sensor Using VLSI Technology”, Japanese Journal of Applied Physics, Vol. 40, PP. 6311-6315.

[87]S. Wakida, S. Mochiziuki, R. Makabe, A. Kawagara, M. Yamne, S. Takasuka , K. Higashi, 1991, “pH-Sensitive ISFETs Based on Titanium Nitride and Their Application to Battery Monitor”, Proceedings of The 1991 Solid-State Sensors and Actuators-Digest of Technical Papers(IEEE Conference), June 24-27, PP. 222-224.

[88]黎振策,2001,氮化鈦感測膜應用在延伸式閘極離子場效電晶體,中原大學電子工程研究所,碩士論文。

[89]劉適意,2004,釕濺鍍於生醫感測器之備製、量測及讀出電路之探討,國立雲林科技大學電子工程研究所,碩士論文。

[90]王乙方,2001,以電漿輔助化學氣相沉積法備製非晶形矽氫與溶膠凝膠法備製二氧化錫閘極酸鹼離子感測場校電晶體之研究,國立雲林科技大學電子與資訊工程研究所,碩士論文。

[91]廖嵐彬,2003,二氧化鈦酸鹼離子感測場效電晶體元件與積體化讀出電路之研究,國立雲林科技大學電子與資訊工程研究所,碩士論文。

[92]蔡居能,2005,研究二氧化錫酸鹼感測器之非理想效應及校正方法,中原大學電子工程研究所,碩士論文。

[93]蔡軒名,2001,以非晶形碳氫與非晶形矽氫當作氫離子感測場效電晶體閘極材料及其讀出電路之研究,國立雲林科技大學電子與資訊工程研究所,碩士論文。

[94]A. Morgenshtin, L. Sdakov Boreysha, U. Dinner, 2004, “Wheatstone Bridge Readout Iinterface for ISFET/REFET Applications”, Sensors and Actuators B, Vol. 98, PP.18-27.

[95]Shaiar Jamasb, 2004 “An Analytical Technique for Counteracting Drift in Ion-Selective Field Effect Transistors (ISFETs)”, IEEE Sensors Journal, Vol. 4, PP.795-801.

[96]Hon Sum Wong, Marvin H. White, 1989, “A CMOS-Integrated ISFET Operational Amplifier Chemical Sensor Employing Differential Sensing”, IEEE Transactions on Electron Devices, Vol. 36, No. 3, PP.479-487.

[97]Yehya H. Ghallab, Wael Badawy, Karan V.I.S. Kaler, 2003, “A Novel pH Sensor Using Differential ISFET Current Mode Read Readout Circuit”, Proceedings of The International Conference on MEMS, NANO and Smart System (ICMENS’03) (IEEE Conference), July 20-23, PP. 255-258.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔