(3.235.139.152) 您好!臺灣時間:2021/05/11 11:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:章詠湟
研究生(外文):Yung-huang Chang
論文名稱:奈米碳管在氣體感測應用上之研究
論文名稱(外文):The Study on the application of gas sensing by Carbon nanotubes
指導教授:黃 建 盛
指導教授(外文):Chien-sheng Huang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:93
語文別:英文
論文頁數:137
中文關鍵詞:奈米碳管氣體感測
外文關鍵詞:gas sensorcarbon nanotube
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由微波電漿化學氣象沈積系統所生產的奈米碳管被運用來完成電阻式氣體感測器。奈米碳管在N2流率500 sccm、200℃的環境之下,進行15分鐘的回火過程。之後,奈米碳管暴露在一個充滿N2及真空相互交替的環境裡。當奈米碳管暴露在一個充滿N2的環境裡,其電阻會增加。而未回火奈米碳管對於N2的吸收過程是可逆的,但是已回火奈米碳管卻不是。不過已回火奈米碳管對N2吸收作用的靈敏度卻有較佳的表現。從Raman光譜得知,奈米碳管的ID/IG比值在經過回火之後也有下降,這意即表示藉由回火過程,會形成更多的石墨化結構。因此當回火溫度增加時,經XPS發現碳氧比(O/C)從0.094增加到0.303。由於氧缺陷增加的緣故,奈米碳管對N2的吸收機製由物理吸附轉變成化學吸附。因此,奈米碳管對N2吸收作用的靈敏度在經回火過後有改善的現象。不過,當偏壓增加時,奈米碳管對N2吸收是不可逆的反應將會被改變為可逆。
奈米碳管在C2H2氣體流率為30 sccm、溫度為700 ℃之下,經thermal CVD合成。一束碳管和碳管薄膜被拿來研究,比較那一種結構擁有較好的靈敏度。我們發現一束碳管不但有較佳的靈敏度而且擁有較快的反應時間及恢復時間。他可以歸功於強烈不一致的外型;亦即氣體分子比較容易吸附在兩根碳管間的溝槽及碳管表面,因為這些位置提供較多的鍵結及較低的鍵結力。
一個新穎的三極氣體感測器藉由垂直排列的奈米碳管薄膜加以實行。在室溫下,暴露於一個充滿N2及真空相互交替的環境,氣體感測元件的電阻值亦各自地增加及回復至原值。和較低偏壓相比之下,高偏壓會有較好的靈敏度反應。而元件對閘極施加負電壓下,會有更靈敏的N2感測表現。
總而言之,回火過程在奈米碳管表面上提供更多的氣體鍵結位子,但是在較高的偏壓下,強而有力的鍵結將會被克服。奈米碳管薄膜之自由電洞濃度的改變對於N2氣體偵測扮演著重要角色。
The vertically aligned carbon nanotubes (CNTs) deposited by microwave plasma-enhanced chemical vapor deposition (MPCVD) were utilized as resistive gas sensors. The carbon nanotubes were annealed at 200℃ under N2 flow (500 sccm) for 15 minute. After that, the carbon nanotubes were exposed to an N2 filling and pumping environment. Upon exposure to N2 the electrical resistance of vertically aligned carbon nanotubes was found to increase. It was found that the N2 absorption of unannealed carbon nanotubes was reversible, whereas which of annealing ones was not. However, the sensitivity of the N2 absorption on carbon nanotubes was improved after annealing. From the Raman spectra, the ID/IG ratio of carbon nanotubes also decreased after annealing, indicating that more graphenes were formed by the annealing process. Furthermore, from X-ray photoelectron spectroscopy (XPS), it was observed that the ratio of the oxygen to carbon (O/C) signal intensity increased from 0.094 to 0.303 as the annealing temperature increased. Due to the increase of O-defects, the adsorptive mechanism of N2 on carbon nanotubes was transferred from physisorption to chemisorption. Therefore, the sensitivity of the N2 absorption on carbon nanotubes was improved after annealing. However, as the bias voltage increased, the irreversible response of N2 absorption on annealed carbon nanotubes changed to reversion.
Carbon nanotubes were synthesized by thermal chemical vapor deposition (thermal CVD) at 700℃ under C2H2 gas flow rate of 30 sccm. A bundle CNTs and a mat CNTs were investigated to compare which one possessed better sensitivity. It was found that a bundle CNTs not only had better sensitivity but also possessed faster response and recovery time. It can be ascribed to their greatly different shape, indicating that the gas molecules absorption on the groove and surface sites provided more binding-sites and lower binding-force than interstial sites.
A novel three-terminal gas sensor was fulfilled by utilizing the vertically aligned carbon nanotubes mat. Upon exposure to an N2 filling and pumping environment at room temperature of 25 ℃, the electrical resistance of as-made devices was found to increase and to return back, respectively. The sensitivity increased when applying a high source drain bias voltage, compared to a low bias one. Furthermore, the device became more sensitive for N2 detection by applying a negative gate voltage.
As a consequence, the annealing-process provided more gas-binding sites on the surface of carbon nanotubes but the powerful binding was overcome by larger bias voltage. The groove and surface sites of the tube bundle provided more binding-sites and lower binding-force. The alteration of free holes concentration in the CNTs mat played the major mechanism for the N2 gas detection.
Contents
摘要…………………………………………………………….......…VI
ABSTRACT…………………………………………………………...….VI
誌 謝…………………………………………………………………….VI
CONTENTS………………………………………………………...……VI
Figure Captions………………………………………………..…….…..VI
Table Captions………………………………………………….……...VI
Chapter 1 INTRODUCTION………………………………………….1
Chapter 2 LITERATURE REVIEW………………………………..…4
2.1 Introduction of carbon nanotubes…………………………..….4
2.2 Structure and characteristics of carbon nanotubes………...….6
2.3 Growth mechanism of carbon nanotubes……………….…….11
2.4 Synthesis methods of carbon nanotubes…………………...….13
2.4.1 Arc discharge…………………………………………...….13
2.4.2 Laser vaporization…………………………………..……..13
2.4.3 Thermal chemical vapor deposition…………………….…14
2.4.4 Plasma enhanced chemical vapour deposition………….…15
2.5 Applications and development of carbon nanotubes………....18
2.5.1 Field Emitter for Flat Panel Display……………………….18
2.5.2 Transistors…………………………………………...…….18
2.5.3 Hydrogen Storage Medium………………………………..19
2.5.4 Scanning Probe Microscopy(SPM) Probe…………………19
2.6 Applications of CNTs in gas sensor……………….…………..22
2.6.1 CNTs gas sensors…………………………………………..22
2.6.1.1 Electrical properties of CNTs gas sensors…………….23
2.6.1.2 Gas ionization of CNTs gas sensors…………………..24
2.6.1.3 Variation of CNTs weight of CNTs gas sensors……...28
2.6.2 The theory of gas absorption on carbon nanotubes………..30
Chapter 3 EXPERIMENTAL DETAILS……………………….……39
3.1 Experiment instrument and equipment…………………..…..39
3.1.1 Growth instrument…………………………………………39
3.1.1.1 Sputtering System…………………………………..…39
3.1.1.2 Microwave plasma chemical vapor deposition……….40
3.1.1.3 Thermal chemical vapor deposition……………….….41
3.1.2 Film characterization………………………………...…….46
3.1.2.1 Scanning Electron Microscopy (SEM)………………..46
3.1.2.2 Transmission electron microscopy (TEM)…………....47
3.1.2.3 X-ray Photoelectron Spectroscopy (XPS)…………….47
3.1.2.4 Raman Spectroscopy………………………………….49
3.1.3 measurement equipments………………………………….54
3.2 Experiment processes and measurement design…………..…56
3.2.1 Substrate pretreatment………………………………..……58
3.2.2 catalyst deposition…………………………………………58
3.2.3 CNTs growth………………………………………………59
3.2.3.1 Thermal CVD……………………………..…………..59
3.2.3.2 MPCVD…………………………………….…………60
3.2.3.3 Annealing process of MWNTs………………...………61
3.2.4 Analysis…………………………………………………....63
3.2.4.1 Scanning Electron Microscopy (SEM)………………..63
3.2.4.2 Transmission Electron Microscopy (TEM)……….…..63
3.2.4.3 Raman Spectroscopy……………………………….....63
3.2.4.4 X-ray Photoelectron Spectroscopy (XPS)…………….64
3.2.5 Gas-sensing measurement…………………………………64
3.2.5.1 outgassing…………………………………………..…64
3.2.5.2 N2 detection by using various annealed MWNTs……..64
3.2.5.3.1 Without carrier gas……………………………65
3.2.5.3.2 With carrier gas…………………………….…66
3.2.5.4 N2 detection by using a bundle of MWNTs…………67
3.2.5.5 Three-terminal gas sensor of MWNTs mat………....68
Chapter 4 RESULTS AND DISCUSSION……………………….….73
4.1 MWNTs-based Gas sensor synthesized by MPCVD………....73
4.1.1 The analysis of morphology and composition……………..73
4.1.1.1 MWNTs surface morphology of SEM…………….….73
4.1.1.2 TEM images of MWNTs………………………...….76
4.1.1.3 Raman analyses of un- and 200℃ annealed MWNTs
...................................................................................................78
4.1.1.4 XPS analyses of un- and 200℃ annealed MWNTs…80
4.1.2 N2 detection of un- and annealed MWNTs………….……..83
4.2 MWNTs-based Gas sensor synthesized by thermal CVD
……………………………………………………………………….89
4.2.1 The analysis of morphology and composition……..……89
4.2.1.1 SEM image of MWNTs……………………………..89
4.2.1.2 TEM image of MWNTs……………………….….…93
4.2.1.3 Raman analyses of annealing MWNTs…………..…95
4.2.2 The analysis of N2 absorbed mechanism…………….…..97
4.2.2.1 N2 detection with and without carrier gas…………..97
4.2.2.2 Comparison of MWNTs mat and nanotubes bundle
……………………………………………………………….100
4.2.2.3 Three-terminal gas sensor based on MWNTs mat...109
Chapter 5 SUMMARY AND FUTURE RESEARCH………….…..115
REFERENCE……………………………………………………….….117
Reference

[1] S. Iijima, Nature 354 (1991) 56.
[2] W. A. de Heer, A. Chatelain, and D. Ugarte, Science 270 (1995) 1179.
[3] J. Hafner, C. Cheung, C. Lieber, Nature 398 (1999) 761.
[4] C. Liu, Y.Y. Fan, M. Liu, H.T. Cong, H.M. Cheng, M.S. Dresselhaus, Science 286 (1999) 1127.
[5] S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker, Nature 386 (1997) 474.
[6] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. Cheung, and C. M. Lieber, Science 289 (2000) 94.
[7] Bee-Yu Wei, Ming-Chih Hsu, Pi-Guey Su, Hong-Ming Lin, Ren-Jang Wu, Hong-Jen Lai, Sensors and Actuators B 101 (2004) 81.
[8] L. Valentini, C. Cantalini, I. Armentano, J.M. Kenny, L. Lozzi, S. Santucci, Diamond and Related Materials 13 (2004) 1301.
[9] S.G. Wang, Qing Zhang , D.J. Yang , P.J. Sellin , G.F. Zhong, Diamond and Related Materials 13 (2004) 1327.
[10] MRS Bull. 1999, 24, special issue on gas sensing materials.
[11] H. M. McConnell, J. C. Owicki, J. W. Parce, D. L. Miller, G. T. Baxter, H. G. Wada, S. Pitchford, Science 257 (1992) 1906.
[12] A. Mandelis, C. Christofides, Physics, Chemistry and Technology of Solid State Gas Sensor Devices,Wiley, New York 1993.
[13] H. Tang, K. Prasad, R. Sanjinés, F. Lévy, Sensors and Actuators B 26 (1995) 71.
[14] Keat Ghee Ong, Kefeng Zeng, and Craig A. Grimes, IEEE sensors journal 2 (2002) 82.
[15] Y.M. Wong, W.P. Kang, J.L. Davidson, A. Wisitsora-at, K.L. Soh, Sensors and Actuators B 93 (2003) 327–332.
[16] C. Cantalinia, L. Valentinib, I. Armentanob, J.M. Kennyb, L. Lozzic, S. Santuccic, Journal of the European Ceramic Society 24 (2004) 1405.
[17] S. Chopra and A. Phama, J. Gaillard, A. Parker, and A. M. Rao, Appl. Phys. Lett. 80 (2001) 24.
[18] Ashish Modi, Nikhil Koratkar, Eric Lass, Bingqing Wei, Pulickel M. Ajayan, Nature 424 (2003) 171.
[19] S. Chopra, K. McGuire, N. Gothard, and A. M. Rao, Appl. Phys. Lett. 83 (2003) 2280.
[20] J. Chung, k. H. Lee, J. Lee, the international conference on solid state sensors, 2003.
[21] O. K. Varghese, P. D. Kichambare, D. Gong, K. G. Ong, E. C. Dickey, C. A. Grimes, Sensors and Actuators B 81 (2001) 32.
[22] B. R. Huang, C. S. Huang, C. C. Wu, L.-C. L. Chen, K. H. Chen, Diamond and Related Materials 13 (2004) 2156
[23] B.R. Huang, C.S. Huang, C.F. Hsieh, Y.F. Liu, Diamond & Related Materials, 13 (2004) 2131.
[24] Hong-Ming Lin, C. K. Keng, and C. Y. Tung, Nanostructured Materials 9 (1997) 747-750.
[25] I. Hayakawa, Y. Iwamoto, K. Kikuta, S. Hirano, Sensors and Actuators B 62 2000 55–60
[26] Zhong Lin Wang, Adv. Mater. 15 (2003) 432.
[27] E. Comini, G. Faglia, G. Sberveglieri, Zhengwei Pan, Zhong L. Wang, Appl. Phys. Lett. 81 (2002) 1869.
[28] Dawei Gong, Craig A. Grimes, Oomman K. Varghese, Wenchong Hu, R.S. Singh, Zhi Chen, Elizabeth C. Dickey, J. Mater. Res. Vol. 16, No. 12 ( 2001) 3331.
[29] Oomman K. Varghese, Dawei Gong, Maggie Paulose, Keat G. Ong, Craig A. Grimes, Sensors and Actuators B 93 (2003) 338–344.
[30] Oomman K. Varghese, Dawei Gong, Maggie Paulose, Craig A. Grimes, Elizabeth C. Dickey, J. Mater. Res., Vol. 18, No. 1 (2003) 156.
[30] E.C. Walter , K. Ng , M.P. Zach , R.M. Penner , F. Favier, Microelectronic Engineering 61–62 (2002) 555–561.
[32] X.T. Zhou, J.Q. Hu, C.P. Li, D.D.D. Ma, C.S. Lee, S.T. Lee, Chemical Physics Letters 369 (2003) 220.
[33] C. Cantalini, L. Valentini, L. Lozzi, I. Armentano, J.M. Kenny, S. Santucci, Sensors and Actuators B 93 (2003) 333.
[34] Y. X. Liang, Y. J. Chen, and T. H. Wang, Appl. Phys. Lett. 85 (2004) 666.
[35] Yoon-Taek Jang, Seung-Il Moon, Jin-Ho Ahn, Yun-Hi Lee, Byeong-Kwon Ju, Sensors and Actuators B 99 (2004) 118.
[36] Jing Li, Yijiang Lu, Qi Ye, Martin Cinke, Jie Han, M. Meyyappan, Nano Lett. 3 (2003) 929
[37] Bee-Yu Wei, Ph. D Thesis, Department of Materials Engineering, Tatung University, 2003.
[38] Jijun Zhao, Alper Buldum, Jie Han, Jian Ping Lu, Nanotechnology 13 (2002) 195.
[39] F. Villalpando-Pàez, A.H. Romero, E. Muñoz-Sandoval, L.M. Martínez, H. Terrones, M. Terrones, Chemical Physics Letters 386 (2004) 137.
[40] Philip G. Collins, Keith Bradley, Masa Ishigami, A. Zettl, SCIENCE 287 (2000) 1801.
[41] Jing Kong, Nathan R. Franklin, Chongwu Zhou, Michael G. Chapline, Shu Peng, Kyeongjae Cho, Hongjie Dai1, SCIENCE 287 (2000) 622.
[42] H.W.Kroto, J.R.Heath, S.C.O''Brien, R.F.Curl, R.E.Smalley, Nature 318, (1985) 162.
[43] S. Iijima, Nature 354 (1991) 56.
[44] N. Hamada, S. Sawada, A. Oshiyama, New One-Dimensional Conductors : Graphitic Microtubules, Phys. Rev. Lett. 68, (1992) p1581.
[45] R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselus, Electronic structure of chiral graphene tubules, Appl. Phys. Lett. 60, (1992) p2204.
[46] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Materials Science and Engineering, B19 (1993) 185.
[47] M. Endo and H. W. Kroto, J. Phys. Chem., 96 (1992) 6941.
[48] S. Iijima, T. Ichihashi, and Y. Ando, Nature, 356 (1992) 776.
[49] S. Iijima, Materials Science and Engineering, B19 (1993) 172.
[50] Jung, S. H., Kim, M. R., Jeong, S. H., Kim, S. U., Lee, O.J., Applied Physics A-Materials Science & Processing 67 (2003) 285.
[51] Ebbesen, T. W. and Ajayan, P.M., Nature 358 (1992) 220.
[52] Z. C. Feng, A. J. Mascarenhas, W. J. Choyke, J. A. Powell, J. Appl. Phys., 61 (1988) 3176.
[53] Hui Lin Chang, Chao Hsun Lin, Cheng Tzu Kuo, Diamond and Related Materials, 11 (2002) 793-798.
[54] Alan M.Cassell, Jeffrey A. Raymakers, Jing Kong, Hongjie Dai, ,Joural Physical Chemistry B 103 (1999)6484.
[55] W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y.Zhou, R.A. Zhao, G. Wang, Scince 274 (1996) 1701.
[56] L. C. Qin, D. Zhou, A. R. Krauss, D. M. Gruen, Applied Physics Letter 72 (1998) 3437.
[57] T. W. Ebbesen, Carbon Nanotubes, CRC Press, Inc, New York, (1997) p.9
[58] W. A. de Heer, A. Chatelain, D. Ugarte, Science 270(1995) 1179.
[59] Baughman, R. H., Zakhidov, A. A., and de Heer, W. A., Science, 297, (5582), 787-792, 2002
[60] D.Rotman, Natuur & Techniek, 70, (6), 30-37, 2002
[61] http://www.photon.t.u-tokyo.ac.jp/%7Emaruyama/nanotube/nanotube.html.
[62] Y. Ye, C. C Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K. A. Smith, R. E. Smalley Apl. Phys. Lett. 74 (1999) 2307.
[63] H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Coblert, R. E. Smalley Nature 384 (1996) 147. 99
[64] T. Uchihashi, N. Choi, M. Tanigawa, M. Ashino, Y. Sugawara, H. Nishijima, S. Akita, Y. Nakayama, H. Tokumoto, K. Yokoyama, S. Morita, M. Ishikawa, Jpn. J. Appl. Phys. 39 (2000) L887.
[65] S. Jarvis, T. Uchihashi, T. Ishida, H. Tokumoto, Y. Nakayama, J. Phys. Chem. B 104 (2000) 6091.
[66] M. Ishikawa, K. Ojima, M. Yoshimura, K. Ueda, in preparation.
[67] Jing Kong, Michael G. Chapline, Hongjie Dai, Adv. Mater. 13 (2001) 1384
[68] A. Goldoni, L. Petaccia, S. Lizzit, R. Larciprete, resesrch highlights 2003.
[69] Shu Peng, Kyeongjae Cho, Nano Lett. 3 (2003) 513
[70] C. Cantani, L. Valentini, I. Armentano, L. Lozzi, J. M. Kenny, S. Santucci, Siensors and Actuators B 95 (2003) 195.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李艷紅。「政治新聞的模糊表述:從中國大陸兩家報紙對克林頓訪華的報導看市場化的影響」。新聞學研究第75期(2003年): 頁169-199。
2. 王心儀。「『金融改革』的兩套標準」。農訓雜誌第19卷第10期(2002年):頁60-63。
3. 沈清松。「從現代到後現代」。哲學雜誌第4期(1993年):頁 4-25。
4. 吳宜蓁。「危機溝通策略與媒體效能之模式建構--關於腸病毒風暴的個案研究」。新聞學研究第62期(2000年): 頁1-34。
5. 吳榮杰、周百隆。「農漁會信用部組織與管理之檢討」。農業金融論叢第43期(2000年):頁1-42。
6. 林享能。「論農漁會信用部之改革」。國家政策論壇第92期春季刊(2003年): 頁176-190。
7. 孫同文。「臺灣公共行政研究的智能活動與主旨」,理論與政策第12卷第2期(1998年):頁 96-108。
8. 夏春祥。「新聞論述與臺灣社會:二二八事件的議題生命史」,新聞學研究第75期(2003年):頁201-242。
9. 陳永琦。「從制度經濟學分析我國農會信用部之經營問題與改進方向」,臺灣金融財務季刊第2卷第3期(2001年): 頁187-200。
10. 陳秋文。「當前臺灣基層金融機構的問題與因應之道」,金融研訓第82期(1996年):頁11-20。
11. 陳憶寧。「2001年台北縣長選舉公關稿之議題設定研究:政治競選言說弁鄐尷R之應用」,新聞學研究第74期(2003年):頁45-72。
12. 黃百全。「如何解決農會信用部問題之研究」,產業經濟第250期(2002年):頁1-59。
13. 黃惠萍。「媒介框架之預設判準效應與嬝奶H的政策評估-以核四案為例」,新聞學研究第77期(2003年):頁67-105。
14. 廖坤榮。「臺灣農會經營管理的困境--網絡理論的分析」,政治科學論叢第16期(2002年):頁163-186。
15. 蔡秋榮。「農會法修正方向之探討」,基層金融第30期(1995年):頁125-149。
 
系統版面圖檔 系統版面圖檔