跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/09/25 14:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳彩瑗
研究生(外文):Tsai-Yuam Wu
論文名稱:以本體論為基礎之適性化網頁瀏覽機制-以社區防災為例
論文名稱(外文):An Ontology-Based Adaptive Web Browsing Mechanism for Community-Based Hazard Mitigation
指導教授:徐濟世徐濟世引用關係
指導教授(外文):Jih-Shih Hsu
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:資訊管理系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:60
中文關鍵詞:本體論推薦系統瀏覽歷程社區防災
外文關鍵詞:Community-Based Hazard MitigationRecommendationOntologyBrowsing History
相關次數:
  • 被引用被引用:2
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:7
隨著網際網路與全球資訊網的興起盛行,人們只要透過簡單的超連結功能,就可以不受任何時間或地點限制從浩瀚的網路資源中獲得資訊。然而,目前網頁瀏覽往往會造成使用者迷失、資訊超載,以及擷取出不符合使用者需求的資訊等問題。所幸,目前在電腦科學領域上所應用的本體論是一個將知識明確表達的機制,倘若能將領域知識以本體論形式表現出來,並透過網際網路進行語意知識的傳遞分享,將能解決上述資訊存取的缺失。因此,本研究的目的即是提出一個以本體論為基礎的適性化網頁瀏覽機制,並應用於社區防災知識瀏覽方面。本研究結合了社區防災知識的本體論與使用者瀏覽歷程本體論,不僅賦予關鍵字語意的查詢功能,還能促進知識瀏覽的適性化推薦,並使網頁內容知識更明確的組織與呈現。因此,本研究結合了以本體論為基礎的語意瀏覽查詢和使用者瀏覽歷程分析推薦機制,以符合使用者的瀏覽查詢需求,達到個人適性化的學習。
As Internet and World Wide Web are getting more popular, people can obtain information from enormous network resources by simple hypertext links. However, people are likely to encounter disorientation and information overloads besides finding irrelevant information during the web page searches. Fortunately, ontology which is a knowledge-represented mechanism can resolve these undesirable phenomenons. When the knowledge is represented in a declarative formalism, it will facilitate the transmission, sharing and reuse of semantic knowledge through the Web. Hence, ontology can support semantic information navigation and enable intelligent information access for human users, and machines as well.
For reasons mentioned above, the purpose of this paper is to bring up an ontology-based adaptive web browsing mechanism for community-based hazard mitigation. It also utilizes the records and analyses of users’ browsing behavior so as to provide users suggestions to find information they want. In conclusion, this study integrates ontology-based semantic information browsing and analyzes users’ browsing behavior to meet users searching demands and enhance personal adaptive learning.
中文摘要.....................................................i
英文摘要....................................................ii
誌 謝......................................................iii
目 錄.......................................................iv
表目錄......................................................vi
圖目錄.....................................................vii
一、 緒論........................................................1
1.1 研究背景與動機...............................................1
1.2 研究問題與目的...............................................2
1.3 研究範圍與限制...............................................3
1.4 論文架構.....................................................4
二、 文獻探討........................................................6
2.1 Semantic Web.................................................6
2.2 Ontology.....................................................7
2.2.1 Ontology的定義.........................................7
2.2.2 Ontology的分類.........................................8
2.2.3 以Ontology為基礎作資訊擷取與瀏覽.......................9
2.2.4 Web Ontology Language.................................10
2.3 網頁瀏覽推薦機制............................................11
2.3.1 User Profile..........................................11
2.3.2 推薦系統的簡介........................................12
2.3.3 目前網頁瀏覽推薦機制..................................12
2.4 社區防災....................................................14
三、 研究方法.......................................................15
3.1 設計目標....................................................15
3.2 系統架構....................................................16
3.3 後端資料庫..................................................17
3.4 瀏覽歷程記錄................................................18
3.5 瀏覽歷程分析................................................18
3.6 語意查詢分析................................................20
3.7 知識瀏覽....................................................22
四、 系統設計與實作.................................................24
4.1需求分析.........................................................24
4.1.1 使用案例......................................................24
4.1.2 使用案例活動流程..............................................29
4.2系統環境與架構...................................................36
4.2.1 系統環境......................................................36
4.2.2 架構設計......................................................37
4.3本體論知識庫之建置...............................................37
4.3.1 社區防災知識本體論............................................38
4.3.2 瀏覽歷程本體論................................................40
五、 系統使用情境說明............................................. 41
5.1網頁登入.........................................................41
5.2社區防災知識瀏覽功能.............................................41
5.3瀏覽歷程分析功能.................................................42
5.4語意查詢分析功能.................................................43
5.5檢視瀏覽歷程與我的最愛功能.......................................44
六、 結論與建議.....................................................46
6.1研究結論.........................................................46
6.2研究貢獻.........................................................47
6.3未來研究建議.....................................................48
參考文獻............................................................49
中文部分
楊士芳,民89,台灣的天然災害,地景保育通訊,第12期。
鄧子正、沈子勝,民91,民間與社區防救災教育之建立與推動分析,內政部消防署委託之
研究報告(報告編號:091-30106000C1-009),未出版。
鄧子正、沈子勝,民92,推動社區防災現況調查與教育訓練規範研究,內政部消防署委託
之研究報告,未出版。

英文部分
Antoniou, G. & van Harmelen, F. (2004). A Semantic Web primer. Cambridge, MA:
The MIT Press.
Berners-Lee, T. (with Fischetti, M.) (1999). Weaving the Web: The original
design and ultimate destiny of the World Wide Web by its inventor. San
Francisco, CA: HarperBusiness.
Bunge, M. (1977). Ontology I: The Furniture of the World. Treaties on Basic
Philosophy, Vol. 3, Boston, Mass.: D. Reidel Publishing.
Carreira, R., Crato, J. M., Gonçalves, D. & Jorge, J. A. (2004). Evaluating
adaptive user profiles for news classification. Proceedings of the 9th
international conference on Intelligent user interface, Madeira, Portugal,
206 – 212.
Daconta, M. C., Obrst, L.J. & Smith, K. T. (2003). The Semantic Web: A guide
to the future of XML, Web Services, and Knowledge Management. IN: Wiley.
Davies, J., Fensel, D. & Harmelen, F. v. (2003). Introduction. In J. Davies,
D. Fensel & F. v. Harmelen (Eds.), Towards the semantic web: ontology-
driven knowledge management (pp.1-9). West Sussex, England: John Wiley &
Sons, Ltd.
Eirinaki, M. & Vazirgiannis, M. (2003). Web mining for Web personalization.
ACM Transactions on Internet Technology, 3(1), 1–27.
Fensel, D., Hendler, J., Lieberman, H. & Wahlster, W. (2003). Introduction. In
D. Fensel, J. Hendler, H. Lieberman & W. Wahlster (Eds.), Spinning the
Semantic Web: Bringing the World Wide Web to its full potential (pp. 1-
25). Combridge, MA: The MIT Press.
Goldberg, D. Nichols, Oki, D. B. M., & Terry, D. (1992). Using collaborative
filtering to weave an information Tapestry. Communication ACM, 35(12), 61-
70.
Gruber, T. R. (1993a). A translation approach to portable ontology
specifications. Knowledge Acquisition, 5(2), 199-220.
Gruber, T. R. (1993b). Toward principle for the design of ontologies used for
knowledge sharing. International Journal of Human-Computer Studies, 41,
399-424.
Guarino, N. (1998). Formal ontology and information systems. In N. Guarino
(Ed.), Formal Ontology in Information Systems (pp. 3-15). Amsterdam,
Netherlands: IOS Press.
Kim, J. G. & Lee, E. S. (1999). Intelligent information recommend system on
the Internet. Proceedings of the 1999 International Workshops on Parallel
Processing, Wakamatsu, Japan, 376-380.
Lainé-Cruzel, S., Lafouge, T., Lardy, J. P. & Abdallah, N. B. (1996).
Improving information retrieval by combining user profile and document
segmentation. Information Processing & Management, 32(3), 305-315.
Lassila, O. & McGuinness, D. (2001). The role of frame-based representation on
the Semantic Web. Knowledge Systems Laboratory Report KSL-01-02, Stanford
University.
Maedche, A. & Staab, S. (2001). Ontology learning for the Semantic Web. IEEE
Intelligent Systems, 16(2), 72-79.
McDonald, D. W. (2003). Ubiquitous recommendation systems. Computer, 36(10),
111-112.
McGuinness, D. L. (2003). Ontologies Come of Age. In D. Fensel, J. Hendler, H.
Lieberman & W. Wahlster (Eds.), Spinning the Semantic Web: Bringing the
World Wide Web to its full potential (pp. 171-194), Combridge, MA: The MIT
Press.
Middleton, S. E., Shadbolt, N. R. & Roure, D. D. (2004). Ontological user
profiling in recommender systems, ACM Transactions on Information Systems,
22(1), 54–88.
Pierre, S., Kacan, C. & Probst, W. (2000). An agent-based approach for
integrating user profile into a knowledge management process, Knowledge-
Based Systems, 13(5), 307-314.
Resnick, P. & Varian, H. R. (1997). Recommender systems. Communication of ACM,
40(3), 56-58.
Staab, S. & Maedche, A. (2000). Ontology engineering beyond the modeling of
concepts and relations. In R. V. Benjamins, A. Gomez-Perez, N. Guarino &
M. Uschold (Eds.), Proceedings of the ECAI''2000 Workshop on Applications
of Ontologies and Problem-Solving Methods. Berlin, Germany.
Sugiyama, K., Hatano, K. & Yoshikawa M. (2004). Adaptive web search based on
user profile constructed without any effort from users. Proceedings of the
13th international conference on World Wide Web, Manhattan, NY, USA, 675 – 684.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top