跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/18 12:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡振嘉
研究生(外文):Jhen-Jia Hu
論文名稱:一簇串級式非線性系統模糊李亞普若夫可變結構控制及其在雙旋轉翼系統之應用
論文名稱(外文):Fuzzy Lyapunov Variable Structure Control of a Class of Cascade-Connected Nonlinear Systems and Its Application to a Twin-Rotor Multi-Input Multi-Output System
指導教授:蘇仲鵬蘇仲鵬引用關係
指導教授(外文):Juhng-Perng Su
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:98
中文關鍵詞:可變結構控制法則雙旋轉翼多輸入多輸出系統旋轉平移質量制動器串級式非線性系統模糊李亞普若夫法則
外文關鍵詞:fuzzy Lyapunov control lawCascade-connected nonlinear systemsTORA (Translational Oscillator with Rotational ATRMS (Twin Rotor Multi-input Multi-output Systemvariable structure control law
相關次數:
  • 被引用被引用:0
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是針對串級式非線性系統來設計強健性控制器,而在實際的機電整合系統中,可以發現很多物理系統都屬於此類系統。基於可變結構控制理論,發展出兩種可變結構控制策略:串級式模糊李亞普若夫可變結構控制與複合式模糊李亞普若夫可變結構控制。
第一種控制策略的主要特點是串級式的設計架構,首先引入模糊李亞普若夫控制法則對治非線性系統的機械子系統,然後再以可變結構控制法則對治非線性系統的電驅動子系統形成串級式控制架構。第二種控制策略是在互補式可變結構控制架構下,分別對機械子系統與電驅動子系統設計可變結構控制法則;整體組合而成的控制律,稱為複合式模糊李亞普若夫可變結構控制器。
在理論驗證方面,以常見的標準模擬系統旋轉平移質量制動器及實際的雙旋轉翼設備來模擬及實驗。結果顯示本文所設計的控制器在系統參數變動及外部干擾時都能對平滑的時變訊號有傑出的追蹤能力。
In this thesis, we investigated the design of robust controllers for a class of cascade-connected nonlinear uncertain systems, which contains many mechatronic physical systems. On the basis of the variable structure system theory, we have successfully developed two stable variable structure control schemes, called the cascade fuzzy Lyapunov variable structure controller and the composite fuzzy Lyapunov variable structure controller, respectively, for this class of systems.
A key feature of the first control scheme is that a fuzzy Lyapunov based control law is firstly developed for the mechanical driven subsystem, and then a complementary variable structure control strategy is designed for the electrical driving subsystem. Based on the result of complementary variable structure control, the second control scheme, a composite design of fuzzy Lyapunov variable structure controllers for mechanical driven and electrical driving subsystems has been proposed.
The benchmark nonlinear systems, called TORA (Translational Oscillator with Rotational Actuator) and TRMS (Twin Rotor Multi-input multi-output System), were used to illustrate the controller design. Simulation and experimental results indicate the proposed control schemes are outstanding in tracking smooth time-varying signals in face of parameter uncertainties and of external disturbances.
中文摘要:--------------------------------------------------------------------Ⅰ
英文摘要:--------------------------------------------------------------------Ⅱ
誌謝:------------------------------------------------------------------------Ⅲ
目錄:------------------------------------------------------------------------Ⅳ
圖目錄:----------------------------------------------------------------------Ⅵ
第一章緒論---------------------------------------------------------------------1
1.1研究動機--------------------------------------------------------------------1
1.2文獻回顧--------------------------------------------------------------------4
1.3主要貢獻--------------------------------------------------------------------6
1.3論文組織--------------------------------------------------------------------7
第二章模糊李亞普若夫與可變結構控制---------------------------------------------8
2.1模糊李亞普若夫控制法則------------------------------------------------------8
2.1.1簡介----------------------------------------------------------------------8
2.1.2模糊李亞普若夫控制器------------------------------------------------------9
2.1.3設計步驟-----------------------------------------------------------------11
2.2可變結構控制法則-----------------------------------------------------------19
2.2.1簡介---------------------------------------------------------------------19
2.2.2滑動模式控制器-----------------------------------------------------------19
2.2.3設計步驟-----------------------------------------------------------------22
第三章對一簇非線性串級式系統設計模糊李亞普若夫可變結構控制--------------------28
3.1簡介-----------------------------------------------------------------------28
3.2串級式模糊李亞普若夫可變結構控制系統---------------------------------------30
3.2.1簡介---------------------------------------------------------------------30
3.2.2設計步驟-----------------------------------------------------------------31
3.3複合式模糊李亞普若夫可變結構控制系統---------------------------------------32
3.3.1簡介---------------------------------------------------------------------32
3.3.2設計步驟-----------------------------------------------------------------33
3.4數值模擬:旋轉平移質量制動器-----------------------------------------------37
3.4.1串級式模糊李亞普若夫滑動模式控制-----------------------------------------41
3.4.2複合式模糊李亞普若夫滑動模式控制-----------------------------------------43
第四章TRMS基本架構及其數學模式------------------------------------------------45
4.1問題陳述-------------------------------------------------------------------45
4.2數學模式推導及狀態方程式之描述---------------------------------------------47
4.2.1環繞於水平軸的作用力-----------------------------------------------------47
4.2.2環繞於垂直軸的作用力-----------------------------------------------------51
4.3 TRMS數學模型--------------------------------------------------------------54
4.3.1運動方程式---------------------------------------------------------------54
4.3.2主翼與尾翼馬達輸入電壓-轉速與轉速-推力的關係-----------------------------56
第五章硬體電路簡介與實測結果--------------------------------------------------57
5.1硬體電路簡介---------------------------------------------------------------57
5.2模擬與實測-----------------------------------------------------------------60
5.3結果與討論-----------------------------------------------------------------77
第六章結論與展望--------------------------------------------------------------78
6.1結論-----------------------------------------------------------------------78
6.2未來研究方向---------------------------------------------------------------78
參考文獻----------------------------------------------------------------------80
自傳--------------------------------------------------------------------------85
[1]Khalil, H. K., 2000, Nonlinear systems, 3rd, Prentice-Hall, NJ.
[2]Slotine, J. J. E. and Li, W., 1991, Applied Nonlinear Control, Prentice-Hall, NJ.
[3]Isidori, A., 1999, Nonlinear Control Systems II, Springer-Verlag, London.
[4]Kokotovic, P. V., Khalil, H. K., and O’Reilly, J., 1999, Singular Perturbation Methods in Control: Analysis and Design, 2nd, Academic Press, NY.
[5]Su, J. P. and Wang, C. C., 2005, “Synchronization and secure communication of cascade-connected chaotic systems with uncertainties via a new adaptive variable structure control scheme, International Journal of Bifurcation and Chaos,” Vol. 15, No. 8, August.
[6]Chen, H. M, Su, J. P. and Renn, J. C., 2002, “Complementary soft-switching strategy sliding mode controller applied to the active suspension systems of vehicle control,” The 23rd Symposium on Electrical Power Engineering, December, pp. 1533-1538.
[7]Su, J. P., Wu, T. H., and Zheng, J. J., 2001, “Fuzzy sliding mode control of a track-following system of an optical disk drive,” International Symposium on Optical Memory, Taipei, Taiwan, Technical Digest, pp. 310-311.
[8]Su, J. P., Chen, H. M., 2001, “Inverse model fuzzy sliding mode speed control of a switched-type reluctance motor,” 22th National Conference on Power Systems, National Kaohsiung University of Applied Sciences, pp. 411-416.
[9]Su, J. P., Liang, C. Y. and Chen, H. M., 2002, “Robust control of a class of nonlinear systems and its application to a twin rotor MIMO system,” Proc. of IEEE International Conference on Industrial Technology (ICIT’02), Thailand, December, pp.1272-1277.
[10]Zadeh, L. A., 1965, “Fuzzy sets,” Information and Control, Vol. 8, pp. 338-353.
[11]Zadeh, L. A., 1973, “Outline of a new approach to the analysis of complex systems and decision processes,” IEEE Transaction on Systems, Man, Vybernetics, Vol. 3, pp. 24-44.
[12]Zadeh, L. A., 1996, “Fuzzy logic=computing with words,” IEEE Transaction on Fuzzy Systems, Vol. 4, pp. 103-111.
[13]Margaliot, M., 2000, New Approaches to Fuzzy Modeling and Control, World Scientific, NJ.
[14]Utkin, V. I., 1978, Sliding Modes and Their Application in Variable Structure Systems, MIR, NJ.
[15]Su, J. P., 2002, “Robust control of a class of nonlinear cascade systems: A novel sliding mode approach,” IEE Proc.- Control Theory and Applications, Vol. 149, No. 2, pp. 131-136.
[16]Hwang, C. L. and Lin, H. Y., 2004, “Trajectory tracking of robot using a fuzzy decentralized sliding-mode tracking control,” IEEE International Conference on Fuzzy Systems, Vol. 3, pp. 1437-1442.
[17]Balasuriya, A. and Li, C., 2003, “Adaptive fuzzy sliding mode controller for underwater vehicles,” The Fourth International Conference on Control and Automation, Vol. 10, pp. 83-83.
[18]Ghazi, R., Azemi, A., and Pour Basakhshan, K., 2001, “Adaptive fuzzy sliding mode control of SVC and TCSC for improving the dynamic performance of power systems,” Seventh International Conference on AC-DC Power Transmission, Vol. 28, pp. 333-337.
[19]Nam, S.K., Chang, M. J.,Kang, D.H.,Kim, J.K., Hong, S. I., andLee,M.H., 2001, “Fuzzy sliding control for low emission automotive engines,” IEEE International Symposium on Industrial Electrics, Vol. 2, pp. 1237-1243.
[20]Lin, C. M. and Hsu, C. F., 2004, “Adaptive fuzzy sliding-mode control for induction servomotor systems,” IEEE Transactions on Energy Conversion, Vol. 19, pp. 362-368.
[21]Lin, J, M., Huang, S. J., and Shih, K. R., 2003, “Application of sliding surfaceenhanced fuzzy control for dynamic state estimation of a power system,” IEEE Transactions on Power Systems, Vol. 18, pp. 570-577.
[22]Klir, G. J. and Yuan, B., 1995, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice-Hall, NJ.
[23]Passino, K. M. and Yurkovich, S., 1998, Fuzzy Control, Addison Wesley, Canada.
[24]Moudgal, V. G., Passino, K. M., and Yurkovich, S., 1994, “Rule-base control for a flexible-link robot,” IEEE Transaction on Control Systems Technology, Vol. 2, pp. 392-405.
[25]Domingos, J. C. and Politano, P. R., 2003, “On-line scheduling for flexible manufacturing systems based on fuzzy logic,” IEEE International Conference on System, Man and Cybernetics, Vol. 5, pp. 4928-4933.
[26]Yen, G. and Bui, Tuang, 1997, “Health monitoring of vibration signatures in rotorcraft wings,” IEEE Conference on Aerospace, Vol. 1, pp. 279-288.
[27]Foda, S. G., 2001, “Neuro-fuzzy control of a semi-active car suspension system,” PACRIM IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Vol. 2, pp. 686-689.
[28]Tanaka, K. and Wang, H. O., 2001, Fuzzy Control Systems Desing and Analysis: A Linear Matrix Inequality Approach, John Wiley, NJ.
[29]Wang, H. O., Tanaka, K., and Griffin, M. F., 1996, “An approach to fuzzy control of nonlinear systems: stability and design issues,” IEEE Transactions on Fuzzy Systems, Vol. 4, pp. 14-23.
[30]Wu, S. J. and Lin, C. T., 2000, “Optimal fuzzy controller design: local concept approach,” IEEE Transactions on Fuzzy Systems, Vol. 8, pp. 171-183.
[31]Sabanovic, A. and Ohnishi, K., 1992, “Vibration control of flexible joint-a sliding mode approach,” Proceedings of the International Conference on Industrial Electronics, Control, Instrumentation, and Automation, Vol. 2, pp. 907-911.
[32]Wu, W. C. and Liu, T. S., 2005, “Frequency-shaped sliding mode control for flying height of pickup head in near-field optical disk drives,” IEEE Transactions on Magnetics, Vol. 41, pp. 1061-1063.
[33]Cavallo, A., de Maria, G., Leccia, G. D., and Setola, R., 1998, “Robust vibration control of a DC9 aircraft frame,” IEEE Conference on Decision and Control, Vol. 4, pp. 4039-4044.
[34]Sam, Y. M., Osman, J. H. S., and Ghani, M. R. A., 2003, “Active suspensioin control: performance comparsion using proportional integral sliding mode and linear quadratic regulator methods,” IEEE Conference on Control Applications, Vol. 1, pp. 274-278.
[35]Levant, A., 1993, “Sliding order and sliding accuracy in sliding mode control,” International Journal of Control, Vol. 58, pp. 1247-1263.
[36]Palm, R., 1998, Fuzzy sliding mode control, in C. Bonivento, C. Fantuzzi and R. Rovatti (ed.), Fuzzy logic control advances in methodology, Singapore: World Scientific, pp. 75-109.
[37]Su, J. P., and Wang, C. C., 2002, “Complementary sliding control of nonlinear systems,” International Journal of Control, Vol. 75, No. 5, pp. 360 -368.
[38]Su, J. P. and Liang, C. Y., 2002, “A novel fuzzy sliding mode control of nonlinear systems with bounded inputs,” Journal of Vibration and Control, Vol.8, pp.945-965.
[39]Hu, J. J and Su, J. P., 2004, “A Cascade Design of Fuzzy Lyapunov Complementary Variable Structure Control for a RTAC System,” Proceedings of the 12th National Conference on Fuzzy Theory and Applications, I-Nan, Taiwan.
[40]Hu, J. J., Ciou, Y. J., and Su, J. P., 2004, “A Fuzzy Lyapunov Approach to the Design of a Complementary Variable Structure Controller for a Nonlinear Benchmark System,” Proceedings of the 28th National Conference on Theoretical and Applied Mechanics, CTAM-2004, Taipei, Taiwan, pp. 2462-2470.
[41]Hu, J. J. and Su, J. P., 2005, “Stability analysis and controller design of a twin rotor mimo system using a fuzzy Lyapunov variable structure approach,” IEEE International Conference on Systems and Signals, ICSS-2005, Kaohsiung, Taiwan, pp. 831-836.
[42]Bernstein, D. S., Ed., 1998, “Special issues: A nonlinear benchmark problem,” in International Journal Robust Nonlinear Control, Vol. 8.
[43]Feedback Instr. LTD, 1997, Twin rotor MIMO system: Reference manual, Park Road, Crowborough, E. Sussex, TN6 2QR, UK, Feedback Instr. LTD.
[44]Diong, B. M., 1997, “A sliding mode control approach to the benchmark problem for nonlinear control design,” Proceeding on IECON’97, 1, pp. 68-72.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top