(3.238.99.243) 您好!臺灣時間:2021/05/16 22:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:馮東鴻
研究生(外文):Dong-Hong Feng
論文名稱:流場控制對直昇機氣動力性能及BVI噪音之改善研究
論文名稱(外文):The Study of Using Flow Control to Improve the Aerodynamic Performance and the BVI Noise of a Helicopter
指導教授:劉旭光劉旭光引用關係
指導教授(外文):Liou, S.G.
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:129
中文關鍵詞:擺膜翼尖渦漩流場控制BVI噪音擋板翼次翼
外文關鍵詞:Tip VortexFlow ControlBimorphBVI NoiseSub-Wing TipEnd Plate Tip
相關次數:
  • 被引用被引用:1
  • 點閱點閱:298
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
流場控制一直是空氣動力學領域學者的研究重點,因為透過流場控制可以改善許多相關的流場問題,像是翼尖渦漩結構、BVI噪音等問題。而流場控制所使用的方法不斷的推陳出新,目前所採用的基本上可分為主動式及被動式控制兩類,其差異在於有無使用任何輔助動力。本文中所使用壓電薄膜來激擾流場的方法,即屬於主動式控制;而翼尖形狀的改變,則是屬於被動式控制方法。

本研究之對象為NACA0015的三維機翼模型,在使用激擾方法時,擺膜是被安置在不同的位置上,繼而在不同的攻角下,以不同波形和頻率的訊號來驅動。本研究的目的是在評估機翼處於失速前及嚴重失速時,擺膜激擾及翼尖形狀改變這二種控制方法對改善翼尖渦漩結構的成效,同時也一並瞭解該種方法對升阻力的影響程度。流場觀察以及熱線測速儀與平衡儀之量測結果將是用來建立評估成效的依據。最佳的控制參數結論將被進一步運用到搖控直昇機上,以嘗試降低旋翼的BVI噪音。

由實驗結果得知,翼尖形狀改變中的擋板翼最能有效減少環流強度,其次則是擺膜(x/c=0.3)以56Hz的方波來激擾時。在降低直昇機所產生的BVI噪音上,卻是以擺膜在x/c=0.3處以56Hz方波來激擾時最為有效,翼尖形狀改變中的次翼效果則較差。至於在使用控制方法的同時,翼尖形狀的改變雖對升力的增加亦有幫助,但阻力也隨之增加;而激擾法則對升力與阻力皆無明顯的影響。
Flow control has always been an important research topic for the aerodynamicists, because through its use, a lot of related flow problems can be resolved, such as the break-up of the tip vortex, BVI noise, etc. The methods used for flow control develop quite rapidly, and can be basically classified into two main categories, i.e., active or passive control. Their main difference lies in the use of auxiliary power. The active control schemes applied here is the use of piezoelectric film to excite the flow field. Whereas the wing tip modification is considered a passive control scheme.
The objective of this research is to study the effectiveness of different control schemes on the structural alteration of a tip vortex originated from a three-dimensional, NACA 0015 wing model under pre- and post-stall conditions. The consequences of those control schemes on the aerodynamic performance are also evaluated. As the excitation method was concerned, bimorph made of piezoelectric film was mounted on different locations at the upper surface of the model wing under different angles of attack, and was driven with signals of different waveforms and frequencies. The assessment of success was based upon the results from the laser sheet flow visualization and measurements using hot wire anemometry and force balance. The findings on optimal control parameters were then applied to a remote-controlled helicopter model in an attempt for BVI noise reduction.
Based on the results from the experiment, the end-plate tip is the most effective one in circulation reduction, followed by the bimorph excited using 56Hz square wave. However, when BVI noise reduction is concerned, bimorph turns out to be the best candidate, better than sub-wing tip. As the issue turns to the aerodynamic performance, bimorph doesn’t cause any noticeable change in either lift or drag. But on the contrary, the change of wing-tip configuration promotes both lift and drag.
中文摘要 ……………………………………………………………… Ⅰ
英文摘要 ……………………………………………………………… Ⅱ
誌謝 ……………………………………………………………… Ⅳ
目錄 ……………………………………………………………… Ⅴ
表目錄 ……………………………………………………………… Ⅷ
圖目錄 ……………………………………………………………… Ⅸ
符號表 ……………………………………………………………… XVI



一、 緒論………………………………………………………… 1
1.1 前言………………………………………………………… 1
1.2 文獻回顧…………………………………………………… 2
1.2.1 翼尖渦漩(Tip Vortex)……………………………………… 2
1.2.2 BVI 噪音…………………………………………………… 3
1.3 研究方法及構想…………………………………………… 10
1.3.1 擺膜的激擾………………………………………………… 10
1.3.2 翼尖形狀的改變…………………………………………… 10

二、 實驗設備…………………………………………………… 11
2.1 低速風洞…………………………………………………… 11
2.2 搖控直升機………………………………………………… 12
2.3 滑環……………………………………………………… 13
2.4 搖控直升機測試區……………………………………… 13
2.5 機翼模型…………………………………………………… 14
2.6 熱線測速儀………………………………………………… 14
2.6.1 感測原理…………………………………………………… 15
2.7 皮托靜壓管與差壓計……………………………………… 17
2.8 壓電薄膜…………………………………………………… 18
2.8.1 PVDF壓電材料特性簡介………………………………… 18
2.8.2 擺膜的結合………………………………………………… 19
2.9 20MHz訊號產生器……………………………………… 21
2.10 資料擷取系統……………………………………………… 22
2.10.1 A/D卡………………………………………………………… 22
2.10.2 低通濾波器Low Pass Filter)…………………………… 22
2.10.3 Sample and Hold Circuit(SHC)…………………………… 23
2.11 平衡儀(Aerodynamic Balances)…………………………23
2.12 流場觀察設備……………………………………………… 24
2.12.1 煙霧產生器………………………………………………… 24
2.12.2 氬雷射……………………………………………………… 24
2.13 噪音量測設備……………………………………………… 25
2.13.1 麥克風……………………………………………………… 25
2.14 點膠系統…………………………………………………… 26

三、 實驗前之準備工作及規劃………………………………… 28
3.1 熱線測速儀校正…………………………………………… 28
3.2 風洞品質測試……………………………………………… 30
3.3 不確定度(Uncertainty)評估………………………………. 33
3.4 三維機翼升力曲線………………………………………… 35
3.5 流場特徵頻率的量測……………………………………… 36
3.6 擺膜安裝的位置…………………………………………… 38
3.7 翼尖形狀改變……………………………………………… 39
3.8 擺膜的驅動………………………………………………… 41
3.9 激擾頻率的決定…………………………………………… 41
3.10 實驗規劃…………………………………………………… 45
3.10.1 實驗條件…………………………………………………… 45
3.10.2 量測的位置………………………………………………… 46
3.11 實驗資料擷取流程………………………………………… 50

四、 結果與討論………………………………………………… 54
4.1 流場觀察與流場量測的比對……………………………… 54
4.2 基準機翼之流場觀察……………………………………… 55
4.3 擺膜激擾下之流場觀察…………………………………… 59
4.3.1 攻角為13度下之擺膜激擾流場觀察……………………… 59
4.3.2 攻角為24度下之擺膜激擾流場觀察……………………… 59
4.4 翼尖形狀改變之流場觀察………………………………… 63
4.4.1 攻角13度下翼尖形狀改變之流場觀察…………………… 63
4.4.2 攻角24度下翼尖形狀改變之流場觀察…………………… 65
4.5 擺膜激擾下之流場量測…………………………………… 67
4.5.1 攻角13度下之流場量測與頻譜分析……………………… 67
4.5.2 攻角24度下之流場量測與頻譜分析……………………… 67
4.6 由渦漩速度及環流強度比較控制之成效………………… 72
4.6.1 主動式控制………………………………………………… 72
4.6.2 被動式控制………………………………………………… 86
4.7 主動式與被動式控制對升力與阻力之影響……………… 94
4.7.1 主動式控制對升力與阻力之影響………………………… 94
4.7.2 被動式控制對升力與阻力之影響………………………… 94
4.8 主動式與被動式控制對BVI噪音之影響…………………… 95
4.8.1 主動式控制下之麥克風頻譜分析……………………… 95
4.8.2 被動式控制下之麥克風頻譜分析………………………… 99

五、 結論………………………………………………………… 103
5.1 結論……………………………………………………… 103
5.2 建議與未來展望…………………………………………… 104
參考文獻…………………………………………………… 105
自傳………………………………………………………… 107
【1】Chow, J. S., Zilliac, G. G., Bradshaw, P., 1997, “Mean and Turbulence Measurements in the Near Field of a Wingtip Vortex”, AIAA Journal, Vol. 35, No. 10,October

【2】Fradenburgh, E. A., 1972, “Aerodynamic Factors Influencing Overall Hover Performance”, AGARD-CP-111.

【3】Brentner , K. S., Farassat, F., 2003, “Modeling aerodynamically generated sound of helicopter rotors”, Progress in Aerospace Sciences, PP83~120.

【4】Megan, .S. McCluer, 1996, “Helicopter Blade-Vortex Interaction Noise with Comparisons to CFD Calculations”, NASA Technical Memorandum 110432.

【5】Abe11’o, J. C., Albert, R.G., 2004, “Wake Displacement Modifications to Reduce Rotorcraft Blade-Vortex Interaction Noise”. Journal of Aircraft, Vol. 41, No. 2, March-April.

【6】Li, H., Burggraf, O. R., Conlisk A. T., 2002, “Formation of a Rotor Tip Vortex”, Journal of Aircraft, Vol. 39, No5.

【7】Ramaprian, B. R., Zheng, Y., 1997, “Measurements in rollup Region of the Vortex from a Rectangular Wing”, AIAA Journal, Vol.35, NO. 12.

【8】Russell, J.W., Sankar, L.N., and Tung, C., “High Accuracy Studies of the Tip Vortex Structure from a Hovering Rotor”, AIAA Journal 97-1845.

【9】Dacles-Mariani, J., Zilliac, G. G., 1995, “Numerical/Experimental Study of a Wingtip Vortex in the Near Field”, AIAA Journal, Vol. 33, No. 9 , September .

【10】Hu, H., 2003, “Computational analysis of effects of blade shapes on tip-vortices”, ELSEVIER, pp.279-286., January.

【11】Shockey,G.A.,Williamson, T. W., Cox, C. R. “Helicopter aerodynamics and structural loads survey”,32nd Annual Forum of American Helicopter Society, Washington, DC .

【12】Yung H. Yu, 2000,“Rotor blade-Votrex Interaction Noise”,Progress in Aerospace Sciences ,pp 97~115.

【13】Tung, C., Kube, R., Brooks, T. F., 1998, “Prediction and Measurement of Blade-Vortex Interaction”, Journal of Aircraft, Vol. 35, No. 2, March-April.
【14】Leung,R. C. K., So, R. M. C., 2001, “Noise Generation of Blade-Vortex Resonance”, Journal of Sound and Vibration, pp217-237.

【15】Brooks, T. F.,1993, “Studies of blade vortex interaction noise reduction by rotor blade modification”, Proceedings of the National Conference on Noise Control, Williamsburg, VA, pp57-66.

【16】Ahuja, K. K., Burrin R. H., 1984, “ Control of Flow Separation by Sound”, AIAA Journal-84-2298.

【17】苗君易主持,1994, “利用翼面噴流控制三角翼渦流潰散”,國立成功大學航空太空工程研究所執行,國科會補助專題研究報告,台北市。

【18】Hsiao Fei-Bin, Wu Chen-Jui, Hsu Cheng-Chiang, Hsu Hui-Tse,1994, “Exper-imentai Study on The Suppression of Trailing Vortices by Periodic Flapping Excita-tion”,第二十屆機械工程研討會論文集,pp417~426.

【19】Preisser, J. S., Brooks, T. F., Martin, R. M., 1994, “Recent Studies of Rotorcraft Blade-Vortex Interaction Noise”, Journal of Aircraft, Vol. 31, No. 5, Sept.-Oct.

【20】Yu, Y. H., Gmelin, B., Splettstoesser, W., Philippe, J. J., Prieur J., Brooks, T. F., 1997, “Reduction of Helicopter Blade-vortex Interaction Noise by Active Rotor Control Technology”, Progress in Aerospace Sciences, Vol. 33, pp647-687.

【21】Lowson, M. V., 1992, “Progress Towards Quieter Civil Helicopters”, Aeronautical Journal, pp209-223, June.

【22】AMP Inc., 1994, Piezoelectric Polymer Transducers Properties and Application.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top