(3.226.72.118) 您好!臺灣時間:2021/05/12 07:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黃志偉
研究生(外文):Jhih-Wei Huang
論文名稱:聚甲基丙烯酸甲酯/二氧化鈦奈米複合塑料之磨潤性質研究
論文名稱(外文):Investigation of Tribological Properties of Poly methy1 methacrylate/Titanium Dioxide Nano Composite
指導教授:羅斯維
指導教授(外文):Sy-Wei Lo
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:78
中文關鍵詞:奈米有機/無機複合材料溶膠-凝膠二氧化鈦磨潤
外文關鍵詞:titanium dioxidefrictionwearnano compositesol-gel
相關次數:
  • 被引用被引用:6
  • 點閱點閱:192
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
近幾年,奈米複合材料的優異特性已受到重視,並在全球興起奈米科技狂潮,期待以奈米材料帶動工業革命性的發展,而奈米材料的分散程度與粒徑是其中的關鍵技術。
本論文將高分子材料MMA以凝膠-溶膠法Sol-Gel混入二氧化鈦所形成的奈米有機/無機混成複合材料PMMA-HEMA-Ti(OBu)4X%,TiO2與PMH以化學鍵結連接並達成分子級的混合,將此混成材料製成塊體試片與薄膜。將塊體試片於磨耗試驗機上以柱-盤(pin-on-disk)法進行耐磨耗測驗,觀察在不同荷重與滑動速度條件下對於能量磨耗率的影響,而渦電流位移感測器可以記錄動態摩擦係數的變化情形。
另一方面則以奈米試驗機於薄膜進行壓痕試驗與刮痕試驗,量測薄膜材料的硬度、楊氏係數、抗刮阻力、表面形貌等機械性質。以探討加入二氧化鈦的混成材料在微觀尺度中,磨擦與磨耗的機制與現象。
經由實驗結果發現,隨著荷重-速度(PV值)增加,以添加20%鈦酸丁酯的塊體試片有最佳的耐磨耗性,但是鈦酸丁酯含量30%與40%的試片其磨耗性質則較原始的純高分子材PMH差,而材料的摩擦係數則不受二氧化鈦的影響。另外薄膜在刮痕試驗裡,無機氧化物的混入將增加材料的刮痕深度,導致較差的抗刮能力;經由熱重量分析與微差掃瞄熱分析顯示,材料的熱分解溫度提高,玻璃轉移溫度則不受影響。刮痕試驗與磨耗試驗的實驗結果並無一致性,其可能原因是塊體之性質與溫度效應所致。
In these several years, the outstanding features of nano composite have been focused on. A developing industrial revolution is brought by the growing nano composite technologies that are efflorescent globally. According to recent research, the key technologies of nano composite application are believed to be particulates’ dispersion and diameter.
In this thesis, MMA is mixed through Sol-Gel processing into the organic-inorganic hybrid nano composite PMMA-HEMA-Ti(OBu)4X%, which is produced from titanium dioxide. TiO2 and PMH are connected by chemical bonds to achieve molecular composition. It is then used to produce the bulk and thin film samples. The wear resistance and friction behavior of the bulk specimens are measured on a pin-on-disk tribometers. The effects of the composite component, loading, and sliding velocity on the wear rate and friction force have been observed. On the other hand, nano indentation and scratch tests are conducted on the thin film specimens for the purpose of comparison. The hardness, reduced modulus, scratch resistance, and surface topography in the nano scale are measured for the thin films to analyze the influences of titanium dioxide.
Based on the result of bulk experiments, with increasing PV (pressure and velocity) value, the lowest wear rate was achieved for PMH with 20 wt% TBT. However, for PMH content 30wt% and 40 wt% TBT, the wear resistance is weaker than the pure PMH. In addition, the titanium dioxide does not influence the coefficient of friction.
For thin film specimens, mixing inorganic into the PMH can increase the depth of scratch and therefore reduce the resistance to abrasive wear. The TGA and MDSC analyses show that the glass transition temperature of material is not affected while the decomposition temperature is increasing. In conclusion, there is no correlation regarding the results of wear and friction experiments between bulk and thin film specimens. This might due to the discrepancy of the molecular structure of material and the thermal effect during sliding contact.
第一章 緒論
1.1 研究動機與目的
1.2 文獻回顧
1.2.1 奈米複合材料
1.2.2 溶膠凝膠法(SolGel)
1.2.3 溶膠凝膠工藝
1.2.4 古典摩擦定律(classic law)
1.2.5 磨耗機制
第二章 實驗設備之設計與製造
2.1 實驗方法
2.2 實驗材料
2.2.1 PMMA與TiO2之合成原理
2.2.2 PMMA與TiO2之合成步驟
2.2.3 PMHTiX%薄膜的製備
2.3實驗儀器
2.3.1 磨耗試驗機(Pinondisk)
2.3.2 奈米試驗機(NanoTest)
2.3.3 調幅式微差掃描熱分析儀 (MDSC)
2.3.4 熱重量分析儀(TGA)
2.4 磨耗實驗流程
2.4.1 磨耗實驗之參數設定
2.4.2 磨耗實驗程序
第三章 實驗結果與討論
3.1荷重與速度對摩擦係數變化之觀察
3.1.1 不同滑動速度對摩擦係數之影響
3.1.2 不同荷重對摩擦係數之影響
3.2荷重與速度對能量磨耗率變化之觀察
3.2.1 不同滑動速度對能量磨耗率之影響
3.2.2 不同荷重對能量磨耗率之影響
3.3 PV值對單位時間磨耗率變化之觀察
3.31 不同PV值對單位時間磨耗率之影響
3.3.2 PV值對單位時間磨耗率之影響
3.4奈米壓痕測試
3.5奈米刮痕測試
3.5.1 荷重與接觸深度的關係
3.5.2 荷重與刮痕深度的關係
3.5.3 荷重與摩擦係數的關係
3.6 高分子熱重量損失(TGA)
3.7 示差掃瞄熱分析(MDSC)
3.8 歸納分析與討論
第四章 結論與未來發展
參考文獻
[1]L. Chang, Z. Zhang, C. Breidt, and K. Friedrich, “Tribological properties of epoxy nanocomposites I. Enhancement of the wear resistance by nano-TiO2 particles,” Wear, 258, pp141-148, 2005.
[2]Q. H. Wang, Q. J. Xue, Wei-Min Liu, Jian-Min Chen, “The friction and wear characteristics of nanometer SiC and polytetrafluoroethylene filled polyetheretherketone,” Wear, 243, pp140-146, 2000.
[3] M. Hokao, S. Hironaka , Y. Suda and Y. Yamamoto “Friction and wear properties of graphiterglassy carbon composites,” ar, 37, p54-62, 000
[4] S. Bahadur and C. Sunkara, “Effect of transfer film structure, composition and bonding on thetribological behavior of polyphenylene sulfide filled with nanoparticles of TiO2, ZnO, CuO and SiC” Wear, 258, pp1411-1421, 2005
[5] Z. H. Huang, K. Y. Qiu, “The effects of interactions on the properties of acrylic polymers/silica hybrid materials prepared by the in situ sol-gel process,” Polymer, 38(3), pp521, 1997.
[6] J. M. Jiang, “Epoxy--SiO2 Hybrid Material via Sol-Gel for Bone Cement Application,” 1998
[7]G. Gua, Z. Zhangb and H. Danga, “Preparation and characterization of hydrophobicorganic–inorganic composite thin films of PMMA/SiO2/TiO2 with low friction coefficient,” Applied Surface Science, 221, pp129–135, 2004
[8] 徐國財/張立德,奈米複合材料,五南圖書,pp232-310,2003
[9] 曹茂盛,奈米材料導論,學富文化事業,2003
[10] 羅吉宗,奈米科技導論,全華科技,2003
[11] 楊春欽,磨潤學原理與應用,科技圖書,pp161-162,1986
[12] 陳世春/劉守一,塑膠材料潤滑性質,復漢出版社,pp54~55,,1988
[13] 羅斯維教授,磨潤技術上課講義,國立雲林科技大學機械系
[14] 翁暢健,壓克力/二氧化鈦複合材料的製備與性質研究,碩士論文,2002
[15] http://www.chemat.com/html/solgel.html
[16] http://optoweb.fis.uniroma2.it/opto/solgel/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔