(3.238.96.184) 您好!臺灣時間:2021/05/15 07:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:邱佩琪
研究生(外文):Pei-Chi Chiu
論文名稱:純元素靶濺鍍之釹-鐵-硼薄膜結構與磁性之研究
論文名稱(外文):The Microstructure and Magnetic Properties of Nd-Fe-B thin film sputtered by pure elemental targets
指導教授:侯春看侯春看引用關係
指導教授(外文):Chun-Kan Hou
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:188
中文關鍵詞:濺鍍釹鐵硼薄膜磁特性微結構
外文關鍵詞:NdFeB thin filmSputteringMagnetic PropertiesMicrostructure
相關次數:
  • 被引用被引用:2
  • 點閱點閱:421
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用單一元素靶材同時濺鍍釹-鐵-硼薄膜,探討在不同濺鍍功率(60W~180W)下,濺鍍狀態及經400℃~800℃退火處理的NdFeB薄膜,其晶體結構、微觀組織及磁特性。研究結果顯示因鐵濺鍍功率的增加,即鐵含量的增加,釹的比例會因此下降,並呈線性式的遞增及遞減。相成份上,於XRD中可明確知道,由於鈦膜沉積,形成六方晶結構的影響,隨後沉積的釹鐵硼薄膜因彈性應變而產生少量結晶化,其生成的晶粒大小約為10nm,過小的晶粒尺寸,結晶化不完全及軟磁相生成的因素皆會造成於水平磁化的磁特性的降低,Nd2Fe14B主相(00l)的產生能造成垂直異向性,生成量的多寡也會影響垂直磁場的磁特性。
在退火處理中,除改變溫度外,還針對不同退火速率以及不同退火爐氛來進行探討,將溫度固定於600℃-20min,以每分鐘19.1℃升降溫速率,或是通入402c.c/min氬氣氣氛做後段退火,由磁特性量測結果可了解,單純改變不同升降溫速率以及不同的爐氛是無法提升薄膜磁特性。另一部份為設定退火溫度(400℃、500℃、600℃、800℃),於相生成中,四百度未達Nd2Fe14B結晶化溫度,故穩定相Nd22.8Fe77.2結晶隨時間而成長至50~100nm間,鐵磁相會使磁化易達飽和。五百度退火已有主相出現,且晶粒成長至100~150nm之間,Nd2Fe14B(00l)方位及Nd22.8Fe77.2相的影響,磁性也有明顯變化,可得到較好的磁能積。隨著溫度上升至600度及800度,晶粒隨退火溫度成長至250nm以上,使成核場翻轉磁化降低,所生成的軟磁相也較多,故磁特性明顯變差。
This study investigated the microstructure and magnetic properties of NdFeB thin films deposited at various Iron sputtering power from 60 to 180 watts by four single element targets and post-annealed at temperature from 400℃~800℃. The Ti/NdFeB/Ti films were deposited on Si(100) substrate by six target magnetron sputtering machine. It was found that Fe/Nd ratio of the films linearly increased with increasing Iron target power. The as sputtered films were amorphous with a few nanocrystalline Nd2Fe14B phases identified by both X-ray diffraction and TEM diffraction pattern.
After annealing at 400℃, some amount of Nd22.8Fe77.2 phase crystallized from the amorphous matrix. During annealing 500 and 600℃, both Nd22.8Fe77.2 phase and Nd2Fe14B crystallized. However, after annealing at 800℃, grain with special orientation grew to 500nm. The grain size of crystallized phases increased with increasing annealing temperature. The optimum magnetic properties were developed after annealed at 500℃ due to fine grain size and less oxidation.
目 錄

中文摘要 -------------------------------------------------------------------------- i
英文摘要 -------------------------------------------------------------------------- ii
誌謝 -------------------------------------------------------------------------- iii
目錄 -------------------------------------------------------------------------- iv
表目錄 -------------------------------------------------------------------------- v
圖目錄 -------------------------------------------------------------------------- vi
符號說明 -------------------------------------------------------------------------- vii
第一章 前言與文獻回顧----------------------------------------------------- 1
1.1 前言-------------------------------------------------------------------- 1
1.2 濺鍍產生率及製程參數的影響----------------------------------- 3
1.2.1 基板溫度效應-------------------------------------------------------- 3
1.2.2 退火溫度效應-------------------------------------------------------- 5
1.2.3 Buffer Layer與Over Layer效應--------------------------------- 6
1.3 濺鍍製程其他影響因子-------------------------------------------- 7
1.3.1 氬(Ar)氣壓力--------------------------------------------------------- 7
1.3.2 靶材成份與薄膜成份----------------------------------------------- 7
1.4 磁化成因-------------------------------------------------------------- 8
1.4.1 成核控制(nucleation control)--------------------------------------- 8
1.4.2 磁壁釘扎(domain wall pinning) ----------------------------------- 9
1.4.3 交換耦合(Exchange coupling) ------------------------------------- 10
1.4.4 PMA與SRT效應--------------------------------------------------- 11
第二章 實驗方法------------------------------------------------------------- 33
2.1 使用材料成份-------------------------------------------------------- 33
2.2 實驗流程-------------------------------------------------------------- 33
2.2.1 試片清洗-------------------------------------------------------------- 33
2.2.2 試片固定-------------------------------------------------------------- 33
2.2.3 鍍膜-------------------------------------------------------------------- 33
2.2.4 退火-------------------------------------------------------------------- 34
2.3 實驗量測分析與試片準備方法----------------------------------- 35
2.3.1 膜厚量測-------------------------------------------------------------- 35
2.3.2 薄膜微觀組織-------------------------------------------------------- 35
2.3.3 表面組織與薄膜成份分析----------------------------------------- 35
2.3.4 硼元素分析----------------------------------------------------------- 36
2.3.5 相鑑別----------------------------------------------------------------- 36
2.3.6 磁滯曲線量測-------------------------------------------------------- 37
2.3.7 EBSD分析------------------------------------------------------------ 37
第三章 濺鍍狀態釹鐵硼薄膜之特性分析-------------------------------- 43
3.1 釹鐵硼成份設計之目的-------------------------------------------- 43
3.2 不同鐵功率對釹鐵硼薄膜之影響-------------------------------- 43
3.2.1 濺鍍薄膜成份分析-------------------------------------------------- 43
3.2.2 薄膜表面形態及膜厚量測----------------------------------------- 44
3.2.3 不同鐵濺鍍功率對釹鐵硼薄膜X光繞射分析---------------- 45
3.2.4 釹鐵硼薄膜之微結構----------------------------------------------- 47
3.2.5 釹鐵硼薄膜之磁特性----------------------------------------------- 48
3.3 釹鐵硼濺鍍之結論-------------------------------------------------- 48
第四章 不同退火溫度對釹鐵硼薄膜之研究----------------------------- 101
4.1 改變製程對薄膜磁特性影響-------------------------------------- 101
4.1.1 不同升降溫速率對薄膜磁性之影響----------------------------- 101
4.1.2 不同爐氛對薄膜磁性之影響-------------------------------------- 102
4.2 不同退火溫度薄膜之相成份分析-------------------------------- 102
4.2.1 四百度退火相分析-------------------------------------------------- 102
4.2.2 五百度退火相分析-------------------------------------------------- 103
4.2.3 六百度與八百度退火相分析-------------------------------------- 103
4.3 不同退火溫度對薄膜磁特性之影響----------------------------- 104
4.3.1 四百度退火微結構分析-------------------------------------------- 104
4.3.2 五百度退火微結構分析-------------------------------------------- 104
4.3.3 六百與八百度退火之微結構分析-------------------------------- 105
4.4 不同退火溫度對薄膜磁特性影響-------------------------------- 105
4.5 不同退火溫度對磁膜結論----------------------------------------- 106
第五章 結論-------------------------------------------------------------------- 162
5.1 釹鐵硼濺鍍結論----------------------------------------------------- 162
5.2 不同退火溫度對薄膜影響之結論-------------------------------- 163
參考文獻 -------------------------------------------------------------------------- 164
附錄一 -------------------------------------------------------------------------- 170
附錄二 -------------------------------------------------------------------------- 171
附錄三 -------------------------------------------------------------------------- 172
1.馮鵬年,楊世平,1989,磁性的秘密,正中書局,台北, p.1-5。
2.Sôshin Chikazumi,1982,磁性物理學,張煦,李學養合譯,聯經出版社,台北, p.3-180。
3.陳士堃博士,2002,磁現象,磁性技術手冊,中華民國磁性技術協會。
4.黃筱琪,張文成博士,2001,添加稀土元素(La)與過渡元素(V、Mo)對釹鐵硼磁膜之影響,中正大學,碩士論文,p.4。
5.K H J Buschow, 1991,“New developments in hard magnetic materials”, Rep. Prog. Phys. 54, 1123-1213.
6.J. R. Hendershot Jr., T. J. E. Miller, 1994 ”Design of Brushless Permanent-Magnet Motor”, Oxford Univ., Press.
7.張文成博士,永久磁石基礎及金屬磁石,磁性技術手冊,中國民國磁性技術協會。
8.Chaban N F, Kuz’ma Yu B, Bilonizhko N S, Kachmar O O, Petrov N V, 1979, Depov Akad Nauk. USSR Ser A Fiz. Mat. Tekh. Nanki. 10, 873.
9.B. M. Ma, J. W. Herchenroeder, B. Smith, M. Suda, D. N. Brown, Z. Chen, 2002, J. Magn. Magn. Mater. 239, 418-423.
10.J. J. Croat, J. F. Herbst, R. W. Lee, F. E. Pinkerton, 1984, J. Appl. Phys. 55, 2708.
11.M. Sagawa, S. Fujumura, N. Togawa, H. Yamamoto, Y. Mutsuura,1984, J. Appl. Phys. 55, 2083.
12.D. J. Keavney, Eric E. Fullerton, J. E. Pearson, S. D. Bader, 1996, IEEE Trans. Magn. Vol. 32, No. 5, 4440-4442.
13.K. D. Durst, H. Kronmüller,1986, J. Magn. Magn. Mater. 59, 86-94.
14.Yutaka Matsuura, Satoshi Hirosawa, Hitoshi Yamamoto, Setsuo Fujimura, Masato Sagawa, Kozo Osamura, 1985, J. J. Appl. Phys. Vol. 24, No. 8. pp. L635-L637.
15.L. Castaldi, H. A. Davies, M. R. J. Gibbs, 2001, J. Magn. Magn. Mater. 242-245, 1284-1286.
16.K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, K. Samwer, S. Fähler, L. Schultz, IFW Dresden, Helmholtzstraβe 20, 01069 Dresden (2001).
17.H. Kronmüller, J. M. D. Coey, ”Magnetic Materials”.
18.F. J. Cadieu, T. D. Cheung, L. Wickramasekara, J. Magn. Magn. Mater. 535 (1986) 54-57.
19.曾百亨教授,“Thin Film Technology 4- Sputtering“,中山大學,材料科學研究所 光電能源材料與元件實驗室。
20.賀方涓博士,2002,“Precision Optical Coating Devices and IT Industry”,工研院 光電所,10/14。
21.周麗新,“薄膜工程”。
22.H. Lemke, T. Lang, T. GÖddenhenrich, C. Heiden, 1995, J. Magn. Magn. Mater. 148, 426-432.
23.S. Parhofer, G. Gieres, J. Wecker, L. Schultz, 1996, J. Magn. Magn. Mater. 163, 32-38.
24.H. Sun, T. Tomida, S. Hirosawa, Y. Maehara, 1996, J. Magn. Magn. Mater. 164, 18-26.
25.Wei Tang, Zhi-Qiaug Jin, Jian-Ron Zhang, Gang Gu, Jian-Ming Li, You-Wei Du, 1998, J. Magn. Magn. Mater. 185, 241-245.
26.Choong Jin Yang, Sang Won Kim, Jong Seog Kang, 1998, J. Magn. Magn. Mater. 188, 100-108.
27.A. S. Lileev, A. A. Parilov, M. Reissner, W. Steiner, 2004, J. Magn. Magn. Mater. 270, 152-156.
28.A. S. Lileev, A. A. Parilov, V. G. Blatov, 2002, J. Magn. Magn. Mater. 242-245, 1300-1303.
29.S. N. Prramanayagam, M. Matsumoto, A. Morrsako, 2000, J. Magn. Magn. Mater. 212, L12-L16.
30.M. Venkatesan, J. Buschbeck, Fernando M. F. Rhen, J. M. D. Coey, 2004, J. Magn. Magn. Mater. 272-276, e881-e882.
31.許泰恩,吳泰伯,X光繞射原理與材料結構分析,中國材料科學學會。
32.L. K. E. B. Serrona, A. Sugimura, N. Adachi, T. Okuda, A. Nakanishi, M. Motokawa, D. H. Ping, K. Hono, 2003, Appl. Phys. Let. Vol. 82, Num. 11.
33.Leo K. E. B. Serrona, A. Sugimura, R. Fujisaki, T. Okuda, N. Adachi, H. Ohsato, I. Sakanoto, A. Nakanishi, M. Mitikawa, 2003, Mater. Sci. Eng. B97, 59-63.
34.Yungui Ma, Zheng Yang, M. Matsumoto, A. Morisako, S. Takei, 2004, Mater. Sci. Eng. B110, 190-194.
35.A. Melsheimer, H. Kronmüller, 2001, Phys. B 299, 251-259.
36.Mhan-joongm Kim, Ying Li, Yoon-bae Kim, Kwon-sang Ryu, Chang-bin Song, Chong-oh Kim, Taik-kee Kim, 2000, IEEE Trans. Magn. Vol. 36, No. 5, 3370-3372.
37.B. Z. Cui, M. J. O’Shea, 2003, J. Magn. Magn. Mater. 256, 348-354.
38.M. A. Parry, I. R. Harris, P. J. Grundy, 2002, in: Kemeko, Homma, Okada(Eds.), Proceedings of the XVI International Workshop on Rare Earth Magnetic Applications, Japan Institute of Metals, p.385.
39.K. T. Wu, Y. D. Yao, I. Klike, 1997, Appl. Surf. Scie. 113/114, 174-177.
40.H. Jiang, J. Evans, M. J. O’Shea, Jianhua Du, 2001, J. Magn. Magn. Mater. 224, 233-240.
41.L. K. E. B. Serrona, R. Fujusaki, A. Sugimura, T. Okuda, N. Adachi, H. Ohsato, I. Sakamoto, A. Nakanishi, M. Motokawa, D. H. Ping, K. Hono, 2003, J. Magn. Magn. Mater. 260, 406-414.
42.Y. G. Ma, Z. Yang, M. Matsunoto, A. Morrsako, S. Takei, 2003, J. Magn. Magn. Mater. 267, 341-346.
43.M. Ohring, 1992, “The Materials Science of Thin Films”, Academic Press, New York, p. 316.
44.H. Juang, M. J. O’Shea, 2000, J. Magn. Magn. Mater. 212, 59-68.
45.Ullrich Hanmemanu, Steffen Melcher, Sebastian Fähler, 2004, J. Magn. Magn. Mater. 272-276, e859-e860.
46.Jai-Lin Tsai, Tsung-Shune Chin, Yeong-Der Yao, A. Melshimer, S. Fisher, T. Drogen, M. Kelsch, H. Kronmüller, 2003, Physica B 327, 283-286.
47.Jai-Lin Tsai, Yeong-Der Yao, Tsung-Shune Chin, H. Kronmüller, 2002, J. Magn. Magn. Mater. 239, 450-452.
48.Y. B. Kim, S. H. Cho, H. T. Kim, K. S. Ryu, S. H. Lee, K. H. Lee, G. A. Kapustin, 2004, J. Magn. Magn . Mater. 272-276, e1917-e1919.
49.L. K. E. B. Serrona, A. Sugimura, K. Nomura, T. Okuda, N. Adachi, H. Ohsato, I. Sakamoto, A. Nakanishi, M. Motokawa, 2004, J. Magn. Magn. Mater. 272-276, e1905-e1907.
50.M. Valetas, M. Vérité, A. Bessaudou, F. Cosset, J. C. Vareille, 2005, Comp. Mater. Sci. 33, 163-167.
51.T. Shima, A. Kamegawa, K. Hono, H. Fujimori, 2001, Appl. Phys. Let. Vol. 78, Num. 14.
52.M. Nakano, R. Kato, H. Fukunaga, S. Tutsumi, F. Yamashita, 2004, J. Magn. Magn. Mater. 272-276, e1909-e1910.
53.S. Steyaert, J. M. Breton, S. Parhofer, C. Kuhrt, J. Teillet, 1999, J. Magn. Magn. Mater. 196-197, 48-50.
54.J. N. Chapman, L. J. Heyderman, S. Young, D. M. Donnet, P. Z. Zhang, H. A. Davies, 1995, Scri. Metal. Mater. Vol. 33, No. 10/11, pp. 1807-1816.
55.R. Hermann, I. Bächer, 2000, J. Magn. Magn. Mater. 213, 82-86.
56.Y. G. Ma, R. S. Li, Z. Yang, M. Matsumoto, A. Morisako, S. Takei, 2005, Mater. Sci. Eng. B 117, 287-291.
57.B. Z. Cui, M. J. O’Shea, 2004, J. Magn. Magn. Mater. 279, 27-35.
58.L. Q. Yu, Y. H. Wen, M. Yan, 2004, J. Magn. Magn. Mater. 283, 353-356.
59.W. L. Liu, Y. L. Liang, B. M. Ma, C. O. Bounds, 1992, IEEE Trans. Magn. Vol. 28, No. 5.
60.Gong Jie, Yang Shi-quing, Zhang Wan-li, Wang Hao-cai, 1999, J. Chinese Rare Earths 20 , 2154.
61.A. S. Kim, F. E. Camp, 1995, IEEE Trans. Magn. 31 (22), 3620.
62.Y. Zhang, A. M. Gabay, E. Belozerov, G. C. Hadjipanyis, “ Magnetic Hardening Studies in Sintered Nd-Fe-B Based Magnets”.
63.李景明博士,張慶瑞博士,2002,磁學原理簡界,磁性技術手冊,中華民國磁性技術手冊。
64.J. D. Livingston, 1985, J. Appl. Phys., Vol. 57, No. 1.
65.K. D. Aylesworth, Z. R. Zhao, D. J. Sellmyer, 1989, J. Magn. Magn. Mater. 82, 448-56.
66.胡裕民,黃榮俊,2002,“磁/反鐵磁金屬薄膜之間的交換磁異向性”,物理雙月刊,廿二卷六期,p.552。
67.蔡佳霖,金重勳博士,2000,Nd-Fe-B Single- and Multi-Layer Films,清華大學,博士論文,p.13。
68.Werner Scholz, “Micromagnetic Simulation of Thermally Activated Switching in Fine Paritcales”, Margaretengürtel 62-64/63/3, 1050 Wien , Matr.Nr. 9426502.
69.H. Inoue, Y. Okada, H. Kuwano, 1992, IEEE Trans. Magn. Vol. 28, No. 5.
70.L. Sun, Y. Hao, C. –L. Chien, P. C. Searson, 1996, IBM J. RES. & DEV. Vol. 49 No. 1 2005.
71.A. Aharoni, Phys. Stat. Sol. 16.
72.高汝偉,李衛,張建成,吳良學,喻曉軍,“晶粒取向、相互作用與釹鐵硼磁體的矯頑力”,1998,Vol-29-99-4。
73.O Gutfleisch, 2000, J. Phys. D: Appl. Phys. 33, R157-R172.
74.H. Kronmüller, 1987, Phys. Stat. Sol. B 144, 385.
75.M. Grönefeld, H. Kronmüller, 1989, J. Magn. Magn. Mater. 80, 223.
76.G. Martinek, H. Kronmüller, 1990, J. Magn. Magn. Mater. 86, 177.
77.A. Bracchi, K. Samwer, S. Schneider, J. F. Löffler, 2003, Appl. Phys. Let. Vol. 82, No. 5.
78.Robert D. Shull, Advances in Magnetic Materials, Agenda Book.
79.A. Herpin, 1968, Théorie du Magnetisme, Presse Universitaires de France, Paris.
80.Pierre Cizeau, Stefano Zapperi, Gianfranco Durin, H. Eugene Stanley, 1997, Phys. Rev. Let. Vol. 79, No. 23.
81.Lynann Clapham, “ Non-Destructive Stress Evaluation”on the web site of Department of Physics, Queen''s University.( http://physics.queensu.ca/~lynann/)
82.Parhofer S, Kuhrt C, Wecker J, Gieres G, Schultz L, 1998, J. Appl. Phys. 83 (5) 2735-2741.
83.E. F. Kneller, R. Hawig, 1991, IEEE Trans. Magn. 27, 3588.
84.P. E. Kelly, K. O’Grady, P. I. Mayo, R. W. Cantrell, 1989, IEEE Trans. Magn. 25, 3881.
85.F. Vajda, E. D. Torre, 1994, J. Appl. Phys. 75, 5689.
86.Guozhi Xie, Shilong Yin, Fengming Zhang, Pinghua Lin, Benxi Gu, Mu Lu, Youwei Du, Zuanru Yuan, 2004, Mater. Let. 58, 636-640.
87.B. Z. Chi, X. K. Sun, L. Y. Xiong, S. T. Cao, X. X. Zhang, W. Liu, D. Y Geng, Z. D. Zhang, 2002, J. Alloys Compounds 340, 242.
88.W. C. Chang, S. H. Hu, B. M. Ma, C. O .Bounds, S. Y. Yao, 1998, J. Appl. Phys. 80, 2147.
89.Q. Chen, B. M. Ma, B. Lu, Q. Huang, D. E. Laughlin, 1999, J. Appl. Phys. 85.
90.E. P. Wohlfarth, 1958, J. Appl. Phys. 29, 595.
91.S. Parhofer, G. Gieres, J. Wecker, L. Schultz, 1996, J. Magn. Magn. Mater. 163, 32.
92.Y. B. Kim, M. J. Kim, J. H. Yang, K. S. Ryu, Ying Li, T. K. Kim, 2001, J. Magn. Magn. Mater. 234, 489-493.
93.J. H. Yang, M. J. Kim, S. H. Cho, H. T. Kim, Y. B. Kim, D. H. Kim, G. A. Kapustin, K. H. Lee, 2002, J. Magn. Magn. Mater. 248, 374-378.
94.R. Chandrasekhar, D. J. Mapps, K. O’Grady, J. Cambridge, A. Petford-Long, R. Doole, 1999, J. Magn. Magn. Mater. 196-197, 104-106.
95.Thanassis Speliotis, Dimitris Niarchos, Vassil Skumryev, Yong Zhang, George Hadhipanayis, 2004, J. Magn. Magn. Mater. 272-27, e877-e879.
96.郭建成,林敏聰,2000,“3d過渡金屬超薄膜及其合金之次性”,物理雙月刊,廿二卷六期,p.561。
97.F. J. Cadieu, 1987, J. Appl. Phys. 61, 4105-4110.
98.E. Y. Vedmedenko, H. P. Oepen, J. Kirschner, 2003, Phys. B 67, 012409.
99.I. Panagiotopoulos, G. K. Nicolaides, V. Psycharis, D. Niarchos, 1994, J. Alloys Comp. 205, 45-47.
100.陳力俊,材料電子顯微鏡學,科儀叢書3,行政院國家科學委員會精密儀器發展中心。
101.林麗娟,1993,“X光繞射在工業材料分析上之應用”,材料與社會,第80期, 8月。
102.G. Schneider, F. J. G. Landgraf, V. Villas-Boas, G. H. Bezerrz, F. P. Missell, 1989, Materials Letters, 8, 472-476.
103.S. Pandian, V. Chandrasekaran, K. J. L Iyer, K. V. S. Rama Rao, 2001, IEEE Tran. Magn., Vol 37, No. 4.
104.L. K. E. B. Serrona, A. Sugimura, A. Nakanishi, T. Okuda, N. Adachi, H. Ohsato, I. Sakamoto, A. Nakanishi, M. Motokawa, 2000, Digest of the 25th Annual Conference on Magnetic, Japan, Akita, 2001, MSJ, Japan, p.424.
105.T. Schrefl, R. Fischer, J. Fidler, H. Kronmüller, 1994, J. Appl. Phys. 76, (10), pp. 7053-7058.
106.A. Nakanishi, M. Ueda, T. Okuda, N. Mizutani, J. Nishiyama, M. Motokawa, Zhongjie Wang, N. Adachi, H. Ohsato, 1999, J. Magn. Magn. Mater. 196-197, 295-296.
107.Jae Man Song, 2001, J. Korean Phys. Soci. Vol. 39, No. 2, p. 314~317.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top