(3.238.130.97) 您好!臺灣時間:2021/05/09 02:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:毛子文
研究生(外文):Tze-won Mon
論文名稱:現場低壓灌漿試驗與灌漿土壤動靜態工程特性之初步研究
論文名稱(外文):A Preliminary Study on In-Situ Low-Pressure Grouting and Engineering Characteristiscs of Grouted Soil
指導教授:張睦雄
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:營建工程系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:172
中文關鍵詞:馬歇管工法現場低壓灌漿壓縮性抗液化強度抗剪強度
外文關鍵詞:in-situ low-pressure groutingshear resistanceTube-A-Manchetteliquefaction resistancecompression settlement
相關次數:
  • 被引用被引用:11
  • 點閱點閱:337
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:0
現場低壓灌漿工法在土木工程中經常被使用,如於地層下陷、地下湧水等災害搶救工程。由於土壤材料與地層結構往往極為複雜,導致現地灌漿之施工品質及成效檢驗難以掌握。本研究希望藉由現場低壓灌漿期間所進行之各項監測,灌漿後場址開挖所做之觀察,同時取得之現地土樣進行室內試驗,以瞭解灌漿漿液之走向與破壞之機制以及灌漿對土壤靜動態工程特性之影響。
本研究以馬歇管(Tube-A-Manachette,TAM)工法於本校場址進行現地低壓灌漿試驗,分別利用懸濁型(GCB漿、CB漿)與溶液型(SA-40)漿液,注入4~8m深度之黏土與砂土層。同時配合不同灌漿階段,進行香港GCO貫入試驗與水準及傾斜管量測,以評估對地層貫入阻抗與地層變形行為。本研究利用現場土樣進行度壓密試驗、直接剪力試驗、及動力三軸試驗來評估灌漿土壤之壓縮性特性與靜動態抗剪強度。研究結果顯示,低壓灌漿可提升地層之貫入阻抗,特別是灌入懸濁型漿液之地盤,其GCO-N值約可提升5-25下。灌漿造成地表隆起量於灌漿孔附近可達3.25cm,約為灌漿深度範圍之0.8%,然其隆起量在灌漿口距離3m外則十分些微。灌漿造成地層側向擠壓位移最嚴重區發生在以懸濁行漿液注入之軟弱黏土層(GL:-4m~-5m)與疏鬆粉砂層(GL:-6.5m~7.5m),對於顆粒較粗之砂層(GL:-5m~-6m)則相對較小。現地開挖發現懸濁型(GCB)漿液於滲透性較差之黏土層以脈狀式(hydro-fracturing)注入機制為主;而溶液型(SA-40)漿於滲透性較佳之粉砂層則以滲透式(permeation)注入機制為主。灌漿結果顯然降低黏性土壤之擠壓性與回脹性,然而對其滲透性似乎影響不大。低壓灌漿明顯提升土壤之凝聚力,特別是對砂性土壤而言約可提升90kPa。黏性土壤之抗剪則似乎不受灌漿之影響;對於砂性土壤而言,抗剪角則受灌漿影響而提升,然其趨勢並不規律。砂質土壤之抗液化能力受灌漿影響明顯提升,特別是對於距離灌漿口2m範圍內、細料含料較少之砂土(FC<25%),在規模較小(M≦6.0)之地震作用下,其抗液化能力約可提升1.5~2.0倍。
Low-pressure grouting is commonly adopted in the engineering practice of Taiwan as a remedial measure for ground subsidence or uncontrolled groundwater flow incidents during construction. Due to variability of material properties and complexity of material strata, the quality of the in-situ grouting are often in doubt and difficult to be assessed. The study herein is intended to have a better understanding on the grouting mechanism and to evaluate the effectiveness of the low-pressure grouting through field monitoring and mapping, as well as laboratory testing of on-site samples.
Low-pressure grouting was conducted through Tube-A-Manchette (TAM) in the campus of National Yunlin University of Science & Technology (NYUST), using 2 suspension grouts (GCB and CB grouts) and one solution grout (SA-40 grout) separately in the on-site clayey layer (depth: 4~5m) and the sandy layer (depth: 5~8m). During grouting stages, Hong Kong GCO probing tests were performed and elevation and inclination of ground surface were measured to evaluate the penetration resistance and deformation of the grouted mass. Laboratory testing on consolidation, direct shear, and cyclic triaxial compression were carried out to determine the compression characteristics and static/cyclic shear resistance of the grouted soils. The results show the penetration resistance was generally increased in the soil mass injected by suspension grouts, where GCO-N values increased by 5-25 were observed. Surface heaving was 3.25cm near the grout hole, which accounted for about 0.8% of entire grouting depth. Surface heaving was, however, insignificant in a distance greater than 3m from the grout hole. Lateral compression was more significant in soft soil layers (silty clay @ depths 4~5m; silty sand @ depths 6.5~7.5m) injected by suspension grouts, as compared with the coarser silty sand layer at depths 5~6m. The on-site mapping of excavated ground revealed that the injection mechanism of suspension grouts in clay was dominated by hydro-fracturing. The injection mechanism of solution grout in sand was, however, by permeation. Low-pressure grouting apparently decreased the potentials of compression and swelling for the clayey soil. The low-pressure grouting was found to increase the cohesion of soil, especially for the sandy soils, the increase could be up to 90 kPa. Friction angle of the clayey soil appeared to have little effect by the grouting. Friction angles of the sandy soils were generally increased as a result of the grouting, although the tendency appeared not clear. The liquefaction resistance of the sandy soils was enhanced by the grouting. In particular for the soil in a distance less than 2m from the grout hole and with a fine content less than 25%, the liquefaction resistance could be increased by 50% to 100%.
目錄
中文摘要……………………………………………………………..……………….….I
英文摘要…………………………………………………………………..…………….II
致謝………………………………………………...…………………………………..III
目錄……………………………………………………………………………...……..IV
表目錄……………………………………………………………….……….........…VIII
圖目錄…………………………………………………………………………………IX
一、緒論 1
1.1 研究動機與目的 1
1.2 研究內容 1
1.3 研究方法與流程 1
二、文獻回顧 4
2.1 灌漿工法之類別 4
2.1.1滲透灌漿………………………………………………………………...4
2.1.2噴射灌漿………………………………………………………………...5
2.1.3擠壓灌漿………………………………………………………………...7
2.1.4脈狀灌漿………………………………………………………………...7
2. 2 低壓灌漿工法 8
2.2.1 低壓灌漿原理與機制 8
2.2.2 灌漿管之種類 10
2.2.3 灌漿材料 15
2.2.4 灌漿液混合方式 17
2.2.5 施灌順序 19
2.2.6 低壓灌漿之應用 21
2.3 灌漿土壤抗液化強度 23
2.4 土壤液化發生機制與影響因素 24
2.4.2相對密度及孔隙比 24
2.4.2土壤顆粒特性 25
2.4.3有效圍壓 25
2.4.4細料含量與塑性 26
2.4.5土層黏土含量 26
2.4.6土壤排水狀況與飽和度 26
2.4.7擾動作用 26
2.4.8前期應力、應變歷史 27
2.4.9側向土壓力係數(K0)與過壓密比(OCR) 28
2.4.10試體準備方法 28
2.4.11試體尺寸與橡皮膜屈從效應 30
2.4.12初始剪應力與壓密應力比 30
2.4.13 振動頻率 30
2.4.14 振動波形 31
2.4.15 液化後土壤之液化阻抗 31

三、現地試驗規劃、設備與結果 32
3.1 試驗內容 32
3.2 現場低壓灌漿試驗規劃 32
3.2.1 試驗場址 32
3.2.2地層概況 33
3.2.3監測與試驗項目 34
3.2.3.1 灌漿孔 34
3.2.3.2 傾斜管 34
3.2.3.3 地表水準點 34
3.2.3.4 GCO貫入試驗 35
3.2.4 灌漿工法之選定 36
3.2.5 改良範圍與施灌順序 36
3.2.6 灌漿材料配比 37
3.2.7 灌漿步驟 39
3.2.6開挖程序 40
3.3 現地試驗與監測儀器 41
3.3.1 GCO貫入試驗儀器與修正因子 41
3.3.2傾斜管監測儀器 42
3.4.1 現地灌漿試驗結果與分析 44
3.4.1 地層貫入阻抗 44
3.4.1.1 GCO貫入試驗結果 44
3.4.1.2 GCO貫入試驗與SPT試驗之差異 46
3.4.2 地表隆起行為 46
3.4.3 地層側向位移 50
3.4.4 工地密度試驗結果 54
3.4.5灌漿破壞機制 54

四、室內試驗規劃 59
4.1 試驗土樣 59
4.2 儀器設備與試驗方法 59
4.2.1 一般物性試驗 59
4.2.2 掃瞄電子顯微(SEM)試驗 59
4.2.3 X-光繞射(XRD)試驗 60
4.2.4 相對密度試驗 62
4.2.5 單向度壓密試驗試驗 62
4.2.6 直接剪力試驗 64
4.2.7 動力三軸試驗 66
4.2.7.1 試驗設備 66
4.2.7.2 儀器率定 70
4.2.7.3 試驗步驟 72
4.2.7.4 試驗原理 74
4.2.7.5 驗破壞準則 76

五、室內試驗結果分析與討論 78
5.1 基本物理性質 78
5.1.1 粒徑分佈 78
5.1.2 礦物成分與表面結構 81
5.2 靜態壓密與力學行為 88
5.2.1 單向度壓密試驗結果 88
5.2.1.1灌漿對沉陷量之影響 88
5.2.1.2灌漿對壓密性及滲透性之影響 88
5.2.2 直剪壓密排水試驗結果 92
5.2.2.1應力與應變行為 92
5.2.2.2 剪脹性 99
5.2.2.3 抗剪強度 101
5.3 動態力學行為 102
5.3.1 典型土壤液化試驗結果 102
5.3.2 抗液化強度曲線 106
5.3.2.1 未受灌漿影響重模土之抗液化強度 106
5.3.2.2灌漿改良後原狀土之抗液化強度 109
5.3.3 剪力模數 116
5.3.4 超額孔隙水壓激發行為 118
六、結論與建議 121
6.1 結論 121
6.2 建議 123
參考文獻……………………………………………………………………………...124
附錄A:單向度壓密試驗結果………………………………………………………...128
附錄B:直接剪力試驗結果…………………………………………………………...141
附錄C:動力三軸試驗結果…………………………………………………………...162
參考文獻
1.米倉亮三、廖洪鈉、林英堂,2002,「�琱[性灌漿材料和其灌漿砂土之動態行為」,地工技術,第93期。
2.胡邵敏、王崑瑞、慮怡志等,1999,「以低壓灌漿工法解決地層下陷問題之案例研究」,第八屆大地工程學術研討會論文集,墾丁,屏東。
3.吳和融,1987,非等向壓密對砂性土壤液化潛能影響之研究,碩士論文,國立台灣大學土木工程研究所,台北。
4.吳偉特、楊騰芳,1987,“細料量在不同程度影響因素中對台灣地區沈積性砂土液化特性之研究”,土木水利,第十四卷,第三期。
5.夏啟明,「細料塑性程度對台北盆地粉質砂液化潛能之影響」,國立台灣大學土木工程研究所,碩士論文(1992)。
6.陳紹魁,1994,平均主應力荷重對台北盆地粉泥質砂土動態特性之研究,碩士論文,國立台灣大學土木工程研究所,台北。
7.陳弘益,2001,灌漿工法改良液化地盤之研究,碩士論文,國立台北科技大學,台北。
8.張瑞津,1985,“濁水溪平原的地勢分析與地形變遷”,台灣師範大學地理研究所研究彙報,第十一期。
9.廖洪鈞、陳堯中,2001,「低強度�琱[型水玻璃灌漿砂土之動態行為」,第九屆大地工程學術研討會論文集,新竹。
10.陳卓然,1983,過壓密與前期微震對台灣地區砂性土壤液化潛能之影響,碩士論文,國立台灣大學土木工程研究所,台北。
11.游叡研,1999,飽和砂土孔隙水壓激發行為之模擬,碩士論文,國立台灣大學土木工程研究所,台北。
12.鄭清江、李建中、簡連貴,1991,“含初始剪應力之砂性土壤變形特性之研究”,中國土木水利學刊,第三卷,第四期。
13.簡璿宸,2002,低壓灌漿工法之研究,碩士論文,國立國立台北科技大學土木與防災研究所,台北。
14.簡連貴、李建中,1993,台灣西部近岸抽砂回填土壤液化潛能之研究,國科會防災科技研究報告。
15.Geotechnical Engineering Office (1996), GEOGUIDE II - Guide to Site Investigation, 359p.
16.Head K.H., (1994), Manual of Soil Laboratory Testing, Volume 2: Permeability, Shear Strength and Compressibility Tests, 2ed, Pentech press, London.
17.Hendron, A. J., 1963, “The Behaviour of Sand in One-Dimension Compression,” Thesis presented to the University of Illinois, at Urbana, Ill., in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
18.Ishibashi, I.M., Sherlif, M.A., and Cheng, W.L., 1982, “The Effects of Soil Parameters on Pore Pressure Rise and Liquefaction Prediction,” Soils and Foundations, JSSMEF, Vol. 22, No. 1, pp.37-48.
19.Ladd, R.S., 1978, “Preparing Test Specimens Using Undercompaction,” Geotechnical Testing Journal, GTJODJ, Vol. 1, March, pp. 16-23.
20.Lee and Fitton, 1969, “Factor Affecting the Cyclic Loading Strength of Soil,” Vibration Effects of Earthquake on Soils and Foundations, ASTM, STP450, pp.71-96.
21.Mori, K., Seed, H.B., and Chan ,C.K., 1975, “Influence of Simple Disturbance on Sand Response to Cyclic Loading,” Report No. EERC 75-03, U.C. Berkeley Earthquake Engineering Research Center.
22.Mulilis, J.P., 1975, “The Effect of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands,” Report No. EERC 75-18, U.C. Berkeley Earthquake Engineering Research Center.
23.Mulilis, J.P. et al., 1978, “Triaxial Testing Techniques and Sand Liquefaction,” Dynamic Geotechnical Testing, ASTM, STP 654, American Society for Testing and Materials, pp. 265-279.
24.Nemat-Nasser , S. and Takahashi, K. ,1984, “Liquefaction and Fabric of Sand, ” Journal of Geotechnical Engineering., Division ASCE, Vol.110, No.9, pp.1291-1306.
25.Phillipson, H.B. (1989),〝GCO Probe - Draft Standard and Notes,〞prepared for Geotechnical Control Office, Public Works Department, Hong Kong, 19p.
26.Peacock, W.H. and Seed, H.B., 1968, “Sand Liquefaction Under Cyclic Loading Simple Shear Conditions,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.94, No. SM3, pp.689-708.
27.Seed, H.B. and Idriss, I.M., 1967, “Analysis of Soil Liquefaction: Niigata Earthquake,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.93, No.SM3, pp.83-108.
28.Seed, H.B., 1979, “Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquakes,” Journal of the Geotechnical Engineering Division, ASCE, Vol.105, No. GT2, Feb., pp. 201-255.
29.Seed, H.B., and Idriss, I.M., 1982, “Ground Motion and Soil Liquefaction During Earthquakes,” Earthquake Engineering Research Institute Monograph.
30.Seed, H.B., Lee, K.L., Idriss, I.M., and Makdisi, F.I., 1973, “Analysis of the Slides in the San Fernando Dams During the Earthquake of February 9, 1971,” Report No. EERC 73-2, Earthquake Engineering Research Center, University of California, Berkeley, California.
31.Seed, H.B. and Idriss, I.M., 1970, “Soil Moduli and Damping Factors for Ground Response Analysis,” EERC Report, No.EERC 70-10, Dec., pp.1-14.
32.Seed, H.B., and Idriss, I.M., 1982, “Ground Motion and Soil Liquefaction During Earthquakes,” Earthquake Engineering Research Institute Monograph.
33.Seed, H.B., and Lee, K.L., 1966, “Liquefaction of Saturated Sands during Cyclic Loading,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.92, No. SM6, pp.105-134.
34.Seed, H.B., Mori, K., and Chan, C.K., 1977, “Influence of Seismic History on Liquefaction of Sands,” Journal of Geotechnical Engineering Division, ASCE, Vol.103, No. GT4, pp. 246-270.
35.Sherif, M.A., Ishibashi, I., and Tsuchiya, C., 1977, “Saturation Effects on Initial Soil Liquefaction,” Journal of the Geotechnical Engineering Division, ASCE, Vol.103, No. GT8, pp. 914-917.
36.Tatsuoka, K. and Nakamura, K., 1986, “A Liquefactoin Test without Membrane Penetration Effects,” Soils and Foundations, Vol. 26, No. 4, pp.127-138.
37.Uchida, K.,Ohmori, H., Takeda, T.,and Shimoda, M.,1996, “Laboratory Element Test on the Effect of Fracturing Grouting on Cyclic Liquefaction Resistance,” Grouting and Deep Mixing, Proceedings of the 2th International Conference on Ground Improvement Geosystems, Tokyo, pp.103~106.
38.Vaid, Y.P. and Finn, W.D.L., 1979, “Static Shear and Liquefaction Potential,” Journal of Geotechnical Engineering Division, ASCE, Vol. 105, No. GT10, pp. 1233-1246.
39.Vaid, Y.P. and Fisher, J.M, 1990, “Particle Gradation and Liquefaction,” Journal of Geotechnical Engineering, ASCE, Vol. 116, No.4, April, pp. 698-703.
40.Wong, R.T., Seed, H.B., and Chan, C.K., 1975, “Cyclic Loading Liquefaction of Gravelly Soils,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.101, No. SM6, pp.571-583.
41.Yoshimi, Y. and Oh-oka, H., 1975, “Influence of Degree of Shear Stress Reversal on the Liquefaction Potential of Saturated Sand,” Soils and Foundations, Vol.15, No.3, pp.27-40.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔