(3.237.48.165) 您好!臺灣時間:2021/05/09 12:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:吳麗詩
研究生(外文):Li-Shih Wu
論文名稱:疏水性沸石對單成份與雙成份揮發性有機物吸附機制之研究
論文名稱(外文):The Study of Adsorption Characteristics for the Single and Binary VOCs on Hydrophobic Zeolites
指導教授:謝祝欽謝祝欽引用關係
指導教授(外文):Chu-Chin Hsieh
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:163
中文關鍵詞:雙成份揮發性有機物揮發性有機物吸附劑吸附疏水性沸石
外文關鍵詞:Volatile Organic Component (VOCs)Binary VOCsAdsorbentHydrophobic zeoliteAdsorption
相關次數:
  • 被引用被引用:17
  • 點閱點閱:484
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:102
  • 收藏至我的研究室書目清單書目收藏:0
半導體產業於晶圓清洗、光阻液清洗、蝕刻液清除的過程中,使用丙酮(acetone)、乙酸正丁酯(n-butyl acetate, NBA)、甲苯(toluene)、異丙醇(isopropyl alcohol, IPA)、單甲基醚丙二醇(propylene glycol methyl ether, PGME)、二甲苯(xylene)等有機溶劑,其揮發性高並有蒸氣逸散的問題。本研究主要以自製疏水性Y型沸石取代活性碳作為吸附劑,其具有孔隙度均勻、耐溫性高、脫附後殘存負荷低等優點,探討自製沸石對於單成份鄰-二甲苯(o-xylene)、異丙醇(IPA)、單甲基醚丙二醇(PGME)以及雙成份IPA-PGME的吸附特性。
本研究使用之吸附設備由四大部份組成,包括VOCs氣體產生系統、吸附管柱、VOCs濃度分析以及脫附反應。首先先進行沸石對於三種有機溶劑的單成份吸附實驗,利用單成份所得的結果配合Langmuir、Freundlich和BET等溫吸附模式,求得本研究所建議的最佳操作條件,然後再由雙成份吸附實驗得到的吸附貫穿曲線,進一步探討雙成份之吸附特性。
研究結果顯示,在單成份吸附實驗中,三種VOCs在不同濃度下之飽和吸附量符合Freundlich吸附方程式,且入口濃度越高,貫穿時間越早。三種VOCs在相同濃度(3000 ppm)下吸附量大小為PGME(292 mg/g~244 mg/g)>IPA(178 mg/g~152 mg/g)>o-xylene(159 mg/g ~139 mg/g)。實驗結果發現疏水性Y型沸石對於o-xylene的吸附能力最差,雖然三種VOCs中以o-xylene沸點為最高,但其為環狀結構,相較於IPA與PGME的支鏈狀,其極性較小且分子結構較大,因此沸石對於o-xylene的吸附能力最弱。反觀IPA與PGME,其兩者在分子結構上同屬於支鏈狀結構,但由於PGME的沸點與極性皆高於IPA,所以沸石對於PGME的吸附量最高,而IPA則次之。在IPA-PGME組成的雙成份系統中,IPA為弱吸附質,受強吸附質PGME競爭吸附之影響,使得IPA達到飽和後出口濃度大於進口濃度,且比PGME提早貫穿。對於弱吸附質而言,在雙成份吸附實驗中的貫穿時間較在單成份吸附實驗中提早,且貫穿曲線較為陡峭,而強吸附質在雙成份吸附實驗中的貫穿時間則較在單成份吸附實驗中還要延遲,且貫穿曲線較為平緩。
根據掃瞄式電子顯微鏡(SEM)觀察結果,經過三次吸附/脫附VOCs後的沸石表面孔隙有減少的現象,本研究推論造成此現象的原因可能為污染物在脫附的程序中未完全的被脫附出,部分殘留在沸石表面上導致沸石孔隙減少,而污染物滯留也會在沸石表面以及孔道中形成焦炭(coke),導致孔道阻塞;而X射線繞射儀(XRD)分析發現經過三次吸附/脫附VOCs後的沸石,其晶相並未改變,即沸石晶體結構並未因重複吸附以及高溫熱脫附而遭受到破壞。吸附劑吸附能力的良窳對於吸附之結果有很大的影響,本研究建議選用吸附劑之前必須對吸附質的物化特性做一詳細瞭解,再選擇適當的吸附劑進行吸附去除,如此才能獲得最有效之去除效果。而雙成份VOCs吸附的機制較單成份複雜許多,在未來可以加入模式解析,由單成份的實驗結果來預測雙成份的總吸附量,不失為一簡單、準確的方法。
The semiconductor industry uses various volatile organic compounds (VOCs) such as acetone, n-butyl acetate, toluene, isopropyl alcohol (IPA), propylene glycol methyl ether (PGME), and xylene. VOCs are easily emitted into the atmosphere during manufacturing processes. The objectives of this research are firstly to evaluate the performance of zeolites instead of activated carbon. The adsorption capacities and characteristics of single and binary VOCs on zeolites are further studied. The isothermal adsorption curves for o-xylene, IPA and PGME in the single component system are determined. Adsorption models such as Langmuir, Freundlich and BET, are used to calculate the optimum operational condition. Moreover, the breakthrough curves of the binary component system are used to discuss further the adsorption characteristics.
The result shows that the adsorption capacity of VOCs fit the Langmuir isotherm in single component system best. PGME shows the best adsorption capacity and IPA is the second. The adsorption of o-xylene provides the worst capacity on a hydrophobic zeolite due to its weak polarity and cyclic molecular structure. In IPA-PGME binary VOCs, IPA appears earlier saturation than PGME. According to the competition adsorption effect, IPA adsorbed on the zeolite will be replaced by the stronger adsorbate PGME, thus adsorbed IPA will be desorbed from the zeolite and released into the air stream. Therefore, outlet concentration of IPA will be increased to a level higher than the inlet concentration after zeolite saturation. For a weak adsorbate, the breakthrough curve in a binary component system shows an earlier saturation and is sharper than in a single component system. For the stronger adsorbate, the breakthrough curve in a binary component system shows later and smoother than in a single component system.
According to analysis conducted by scanning electron microscopy (SEM), the pores on the zeolite are partially blocked after the adsorption and desorption process. But X-ray diffraction shows that the crystal structure of the zeolite are not destroyed. Since adsorbents have different adsorption capacities, it is important to better understand the physical characteristics before application. A binary component is more complicated than a single component, and thus it needs further modeling work in the future.
中文摘要 …………………………………………………………………. i
英文摘要 ………………………………………………………………... iv
致謝 ……...……………………………………………………………… vi
目錄 …………………………………………………………………….. vii
表目錄 …………………………………………………………………… x
圖目錄 …………………………………………………………………... xi
第一章 前言 ………………………………………………………… 1-1
1.1 研究緣起 ………………………………………………. 1-1
1.2 研究目的 ………………………………………………. 1-2
1.3 研究方法 ………………………………………………. 1-3
第二章 研究背景與相關文獻 ……………………………………… 2-1
2.1 半導體產業製程與現況 ………………………………. 2-1
2.1.1 半導體製程與廢氣排放特性 ………………….. 2-1
2.1.2 半導體產業廢氣處理技術 …………………….. 2-5
2.1.3 沸石吸附濃縮轉輪原理 ……………………….. 2-8
2.2 吸附原理 ………………………………………………. 2-9
2.2.1 吸附種類 ……………………………………….. 2-10
2.2.2 等溫吸附曲線 ………………………………… 2-12
2.2.3 吸附方程式 …………………………………… 2-16
2.2.4 單成份吸附貫穿曲線 ………………………… 2-22
2.2.5 多成份VOCs吸附模式 …………………….. 2-23
2.2.6 雙成份吸附貫穿曲線 ………………………… 2-25
2.3 吸附劑的種類與特性 ……………………………… 2-27
2.4 影響吸附能力的因子 ………………………………... 2-30
2.4.1 吸附劑性質的影響 …………………………… 2-30
2.4.2 吸附質性質的影響 …………………………… 2-30
2.4.3 環境的影響 …………………………………… 2-31
2.5 沸石的應用技術 ……………………………………... 2-32
2.5.1 沸石之結構 …………………………………… 2-35
2.5.2 沸石之分類 …………………………………… 2-36
2.5.3 沸石之型式 …………………………………… 2-37
2.5.4 沸石應用之相關文獻 ………………………… 2-43
第三章 研究設備及方法 …………………………………………… 3-1
3.1 研究流程 …………………………………………… 3-1
3.2 研究設備 ……………………………………………… 3-2
3.3 實驗儀器與器材 ………………………………………. 3-7
3.4 實驗藥品及氣體 ………………………………………. 3-7
3.5 實驗方法 ………………………………………………. 3-8
3.5.1 吸附劑之選取 ………………………………….. 3-8
3.5.2 吸附劑之製備方式 …………………………….. 3-9
3.5.3 吸附質之選取 ………………………………….. 3-9
3.6 分析方法 …………………………………………… 3-13
3.6.1 氣相VOCs濃度分析 …………………………. 3-13
3.6.2 檢量線及品保/品管 ………………………… 3-16
3.6.3 沸石特性分析 ………………………………… 3-19
第四章 結果與討論 ………………………………………………… 4-1
4.1 沸石特性測試 ………………………………………… 4-1
4.1.1 BET比表面積測定 …………………………… 4-1
4.1.2 孔徑分佈 ……………………………………… 4-3
4.1.3 SEM分析 ……………………………………… 4-6
4.1.4 XRD分析 ……………………………………… 4-13
4.2 單成份吸附實驗分析結果 ………………………… 4-18
4.2.1 單成份於不同濃度下之吸附貫穿曲線分析 … 4-18
4.2.2 單成份於不同濃度下之吸附量分析 ………… 4-21
4.2.3 沸石等溫吸附實驗分析結果 ………………… 4-24
4.2.4 單成份吸附/脫附實驗分析結果 …………… 4-31
4.3 雙成份吸附/脫附實驗分析結果 …………………… 4-41
第五章 結論與建議 ………………………………………………… 5-1
5.1 結論 ……………………………………………………. 5-1
5.2 建議 ……………………………………………………. 5-4
第六章 參考文獻 …………………………………………………… 6-1
附 錄
附錄A 檢量線 ……………………………………………………… A-1
附錄B 氮氣等溫吸脫附曲線 ……………………………………… B-1
附錄C XRD圖譜 …………………………………………………… C-1
英文部分
Burke, N. R., Trimm, D. L., and Howe, R. F., 2003, “ The effect of silica:alumina ratio and hydrothermal ageing on the adsorption characteristics of BEA zeolites for cold start emission control”, Applied Catalysis B:Environmental, 46, pp.97-104.
Carsten, K. W., Meininghaus, Prins, R., 2000, “Sorption of volatile organic compounds on hydrophobic zeolites”, Microporous and Mesoporous Materials, 35-36, pp.49-365.
Chang, F. T., Lin, Y. C., Bai, H., and Pei, B. S., 2003, “Adsorption and desorption characteristics of semiconductor volatile organic compounds on the thermal swing honeycomb zeolite concentrator”, J. of Air & Waste Management Association, 53, pp.1384-1390.
Chen, H., Matsumoto, A., Nishimiya, N., and Tsutsumi, K., 1999, “Preparation and characterization of TiO2 incorporated Y-zeolite”, Colloids and Surfaces A:Physicochemical and Engineering Aspects, 157, pp.195-305.
Chintawar, P. S. and Greene, H. L., 1997, “Adsorption and catalytic destruction of trichloroethylene in hydrophobic zeolites”, Applied Catalysis B:Environmental, 14, pp.37-47.
Clausse, B., Garrot, B., Cornier, C., Paulin, C., Grange, M. H. S., and Boutros, F., 1998, “Adsorption of chlorinated volatile organic compounds on hydrophobic faujasite:correlation between the thermodynamic and kinetic properties and the prediction of air cleaning”, Microporous and Mesoporous Materials, 25, pp.169-177.
Cooper, C. D. and Alley, F. C., 1996, “Air pollution control a design approach”, 2nd ed., Waveland Press, Inc., Illinois.
Farrell, J., Manspeaker, C., and Luo, J., 2003, “Understanding competitive adsorption of water and trichloroethylene in a high-silica Y zeolite”, Microporous and Mesoporous Materials, 59, pp.205-241.
Fonseca, R. L., Aranzabal, A., Steltenpohl, P., Ortiz, J. I. G. , and Velasco, J. R. G., 2000, “Performance of zeolites and product selectivity in the gas-phase oxidation of 1,2-dichloroethane”, Catalysis Today, 62, pp.367-377.
Giannakopoulos, I. G. and Nikolakis, V., 2005, “Separation of propylene/propane mixtures using faujasite-type zeolite membranes”, Ind. Eng. Chem. Res, 44, pp.226-230.
Gree, S. J. and Sing, K. S. W., 1982, “Adsorption, surface area and porosity”, 2nd ed., Academic Press, London.
Hisanaga, T. and Tanaka, T., 2002, “Photocatalytic degradation of benzene on zeolite-incorporated TiO2 film”, Journal of Hazardous Materials B, 93, pp.331-337.
Ichiura, H., Nozaki, M., Kitaoka, T., and Tanaka, H., 2003, “Influence of uniformity of zeolite sheets prepared using a papermaking technique on VOC adsorptivity”, Advances in Environmental Research, 7, pp.975-979.
IUPAC-Manual of symbols and terminology for physicochemical quantities and units, Butterworths, Londen, 1972.
Kang, Y. M. and Wan, B. Z., 1995, “Preparation of gold in Y-type zeolite for carbon monoxide oxidation”, Applied Catalysis A:General, 128, pp.53-60.
Khalid, M., Joly, G., Renaud, A., and Magnoux, P., 2004, “Removal of phenol from water by adsorption using zeolites”, Ind. Eng. Chem. Res., 43, pp.5275-5280.
Lazar, K., Beyer, H.K., Onyestyak, G., Jonsson, B.J., Varga, L.K., and Pronier, S., 1999, “Iron nanoparticles in X and Y zeolites”, NanoStructured Materials, 12, pp.155-158.
Lee, H. K., Shim, M. J., Lee, J. S., and Kim, S. W., 1996, “Characteristics of CO gas adsorption on modified natural zeolite”, Materials Chemistry and Physics, 44, pp.79-84.
Li, Z., and Gao, L., 2003, “Synthesis and characterization of MCM-41 decorated with CuO particles”, Journal of Physics and Chemistry of Solids, 64, pp.223-228.
Metcalf & Eddy, 2003, “Wastewater engineering treatment and resuse”, 4th ed., McGraw-Hill, New York.
Neyestanaki, A. H., Kumar, N., and Lindfors, L. E., 1994, “Catalytic combustion of propane over Pt and Cu modified ZSM-5 zeolite catalysts”, Fuel, 74, pp.690-696.
Noll, K. E., Gounaris, V., and H, W. S., 1991, “Adsorption technology for air and water pollution control”, Lewis Publishers, Inc., Chelsea.
Pires, J., Carvalho, A., and Carvalho, M. B. D., 2001, “Adsorption of volatile organic compounds in Y zeolites and pillared clays”, Microporous and Mesoporous Materials, 43, pp.277-287.
Requejoa, F. G., López, J. M., Lede, E. J., Miró, E. E., and Pierella, L.B., 1999, “In-containing H-ZSM5 zeolites with various Si/Al ratios for the NO SCR in the presence of CH4 and O2. PAC, TPAD and FTIR studies”, Catalysis Today, 54, pp.553-558.
Rouquerol, F., Rouquerol, J., and Sing, K., 1999, “Adsorption by powders & porous solids”, Academic Press.
Ruthven, D. M.,1984, “Principles of adsorption and adsorption Process”, John Wiley & Sons, Inc., New York.
Sakuth, M., Meyer, J., and Gmehling, J., 1998, “Measurement and prediction of binary adsorption equilibria of vapors on dealuminated Y-zeolites (DAY)”, Chemical Engineering and Processing, 37, pp.267-277.
Salden A., Eigenberger G., 2001, “Multifunctional adsorber/reactor concept for waste-air purification”, Chemical Engineering Science, 56, pp.1605-1611.
Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J. and Siemieniewska, T., 1985, “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity”, Pure & Appl. Chem., 57, pp.603-619.
Suzuki, M., 1990, “Adsorption Engineering”, Kodansha Ltd., Tokyo.
Takeuchi, Y., Iwamoto, H., Miyata, N., Asano, S., Harada, M., 1995, “Adsorption of 1-butanol and p-xylene vapor and their mixtures with high silica zeolites”, Separation Technology, 5, pp.23-34.
Tantet, J., Eic, M. and Desai, R., 1995, “Breakthrough study of the adsorption and separation of sulfur dioxide from wet gas using hydrophobic zeoiltes”, Gas. Sep. Purif., 9, pp.213-220.
Tien, C., 1994, “Adsorption calculations and modeling”, Butterworth-Heinemann, Boston.
Triebe, R.W., Tezel, F.H., and Khulbe, K.C., 1996, “Adsorption of methane, ethane and ethylene on molecular sieve zeolites”, Gas. Sep. Purif., 10, pp.81-84.
Vahdat, N., 1997, “Theoretical study of the performance of activated carbon in the presence of binary vapor mixtures”, Carbon, 35, pp.1545-1557.
Verschueren, K., 1983, “Handbook of environmental data on organic
chemicals”, 2nd ed., Van Nostrand Reinhold Company Inc., New York.
Weber, W. J., JR. and Digiano, F. A., 1996, “Process dynamics in environmental systems”, John Wiley & Sons, Inc., New York.
Zhao, X. S., Ma, Q., and Lu, G. Q., 1998, “VOC removal:Comparsion of MCM-41 with hydrophobic zeolites and activated carbon”, Energy & Fuels, 12, pp.1051-1054.

中文部份
工業污染防治技術服務團,1993,半導體製造業污染防治輔導專案综合報告,經濟部工業局。
工業污染防治技術服務團,1997,半導體製造業污染防治技術,經濟部工業局,台北市。
王國鎮、楊思明,1994,沸石觸媒之特性與應用,化工技術,12期,頁44~51,3月。
汪健民等人,1998,材料分析,中國材料科學學會。
吳桂春、陳柏宇,1987,沸石的應用技術(一),化學工業資訊月刊1卷,23期,頁58~66,7月。
吳榮宗,1989,工業觸媒概論,國興出版社,新竹市。
李琪華,2003,沸石吸附劑之製備、性能測試與特性分析,國立中正大學化學工程研究所,碩士論文。
林敬二、林宗義,1994,儀器分析(下冊),四版,美亞書版股份有限公司,台北市。
林宏端,1993,沸石吸附有機溶劑甲苯之研究,國立台灣大學環境工程學研究所,碩士論文。
郝吉明、馬廣大,1996,空氣污染控制工程,科技圖書股份有限公司,台北市。
莊淳元,2004,運用沸石吸附半導體揮發性有機物丙酮、單甲基醚丙
二醇及乙酸甲氧基異丙酯控制技術之評估研究,國立雲林科技大學環境與安全衛生工程研究所,碩士論文。
張金海,1994,非均勻性反應觸媒特性與實效應用,台灣復文興業股份有限公司,台南市。
張書豪、張木彬,2000,科學園區空氣污染物排放特性之探討,國科會研究報告。
黃正義、陳王琨,1997,空氣污染防制學,淑馨出版社,台北市。
楊金鐘、許菁珊,2004,不同沸石對異丙醇氣體之吸附研究,第二十一屆空氣污染控制技術研討會論文集,台南,11月26日。
鄭宗岳、林鴻祥,1998,空氣污染防治理論與設計,文京圖書股份有限公司,台北市。
顏秀慧,1998,沸石對揮發性有機物吸附行為之研究,國立台灣大學環境工程學研究所,博士論文。
謝祝欽,1999,半導體有害空氣污染物處理技術,國科會/環保署八十八年科技合作研究計畫期末報告。
McCabe, Smith & Harriott, 1992,單元操作(下冊),四版,呂理平等譯,高立圖書有限公司,台北市。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔