( 您好!臺灣時間:2021/05/12 06:48
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Ho-Da Chung
論文名稱(外文):Assaying the Hydraulic Parameter Research of the Three-Dimensional Saturation Soil In-Situ by Pumping Test
指導教授(外文):Jet-Chau Wen
外文關鍵詞:HomogeneousIsotropicHeterogeneousAnisotropicPumping Test
  • 被引用被引用:1
  • 點閱點閱:240
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統飽和含水層之現地試驗通常假設在均質、等向的含水層中進行,但是大多數含水層皆具有非均質及非等向的特性,在水平非等向試驗的分析方法中,水文學者以少數井所得到的現地資訊,並不足以代表整個現地含水層的水力特性。在非均質的水力試驗中,試驗儀器的設計與監測設備在經濟的考量上較為昂貴,會影響現地試驗的可行性。因此,本研究利用國立雲林科技大學校園之地下水位監測場址進行水平非等向與垂直非均質的抽水試驗,以檢定現地含水層水力參數。本研究結果發現以多口監測井(多於四口井),其所獲得的現地資訊,較Neuman(1984)的所提出之三口井方式,更能代表現地含水層的水力特性。本研究結果發現現地非等向主流方向流通係數(Tα)與非等向側流方向流通係數(Tβ)分別為3.00 E-04(m2/s)與2.00 E-04(m2/s),非等向主流方向水力傳導係數(Kα)與非等向側流方向水力傳導係數(Kβ)分別為1.88 E-05(m/s)與1.25 E-05(m/s),等向流通係數Te為2.40 E-04(m2/s),儲水係數S為3.22 E-03,含水層非等向主流方向與世界橫麥卡脫方格座標(又稱為UTM 座標)的X軸所夾的角度為-39.32度。本研究結果發現在非等向水力試驗分析中,顯示水井間某部份不規則的徑向距離會符合地下水位的變化,這顯示出本研究場址為一非均質含水層,此研究結果也應證Bakr等人(1978)在非均質含水層研究中會產生非等向的水力特性。本研究發現在垂直非均質水力試驗分析中,顯示本研究所設計價格較低廉的試驗儀器與設備,能夠應用在探討現地含水層的非均質特性。
The study of the previous researches was based on the assumptions of an isotropic and homogeneous aquifer. In fact, the characteristics of a real aquifer are anisotropic and heterogeneous. In the analyzing methods of horizontal anisotropic test, hydraulic scholars obtain the in-situ data from few wells that can’t represent the real horizontal anisotropic hydraulic quality of the aquifer. In the heterogeneous hydraulic test, the design of experimental instrument and the higher price of monitoring equipments both influence the feasibility of in-situ experiment. Therefore, in this study, pumping tests horizontal anisotropic and vertical heterogeneous was conducted through a group of monitoring wells established on the campus of National Yunlin University of Science and Technology to estimate hydraulic parameter in-situ aquifer.
In the analysis process, the data of hydraulic properties of the aquifer taken from more than four monitoring wells were found to be better than Neuman’s (1984) three-well method. The results of this study are that the principal transmissivity (Tα) and lateral transmissivity (Tβ) are 3.30E-04 (m2/s) and 2.00E-04 (m2/s) respectively; the principal hydraulic conductivity (Kα) and lateral hydraulic conductivity (Kβ) are 1.88E-05 (m/s) and 1.25E-05 (m/s) respectively; the isotropic effective transmissivity Te is 2.40E-04 (m2/s); and the storage coefficient S is 3.22E-03. The angle between the direction (α)of anisotropic coordinates(α,β)and the axis of normal coordinates(X,Y) is 39.32 degrees clockwise from the X-axis. The result showed irregularity concerning some parts of the well distance as well as change of water level, which proves the testing field is a heterogeneous aquifer. This result showed an anisotropic characteristic of hydraulic parameters, agreeing with Bakr et al. (1978) that heterogeneous aquifers have anisotropic characteristics theoretically. The study found that the analysis of the vertical heterogeneous test reveals the lower price of the experimental instrument and equipment that the study designed can be used to discuss heterogeneous quality in the in-situ aquifer.
中文摘要 i
英文摘要 iii
致謝 v
目錄 vi
圖目錄 viii
表目錄 xi

第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 1
1-3 研究動機與目的 8
1-4 研究架構 8
第二章 試驗場址介紹 10
第三章 試驗方法與理論介紹 21
3-1 水平非等向水力試驗 21
3-1-1 試驗方法 21
3-1-1-1 事前規劃 23
3-1-1-2 抽水試驗步驟 26
3-1-1-3 數據QA/QC 27
3-1-2 理論分析 28
3-2 垂直非均質水力試驗 34
3-2-1試驗方法 35
3-2-1-1 事前規劃 37
3-2-1-2試驗步驟 39
3-2-1-3 數據QA/QC 39
3-2-2理論分析 40
第四章 水平非等向水力試驗結果與討論 47
第五章 垂直非均質水力試驗結果與討論 58
第六章 結論與建議 73
參考文獻 75
附錄 79
[1]Bakr, A. A., Gelhar, L. W., Gutjahr, A. L., MacMillan, J. R.,1978, “ Stochastic analysis of spatial variability of subsurface flows. 1. Comparison of one- and three-dimensional flows” ,Water Resources Research, vol. 14 (2), pp. 263-271.
[2]Bear, J., 1979, Hydraulics of groundwater: New York, McGraw-Hill Book Company
[3]Butler, J. J. Jr. 1991,“A Stochastic Analysis of Pumping Tests in Laterally Non-uniform Media”, Water Resources Research, vol. 27(9), pp.2401-2414.
[4]Butler, J. J. Jr. and W. Z. Liu, 1991, “Pumping tests in non-uniform aquifer- the linear strip case”, J. of Hydrology, vol. 128, pp. 69-99.
[5]Butler, J.J., Jr., McElwee, C., and Bohling, G., 1999, “Pumping Tests in Networks of Multilevel Sampling Wells: Motivation and Methodology”, Water Resources Research, vol. 35(11), pp. 3553-3560
[6]Cooper, H.H. and Jacob, C.E., 1946, ” A generalized graphical method for evaluating formation constants and summarizing well field history”, Transactions of the American Geophysical Union, vol. 27, pp. 526-534.
[7]Copty, N. K. and A. N. Findikakis., 2004, “Stochastic analysis of pumping test drawdown data in heterogeneous geologic formations”, J. of Hydr. Res. vol.42, pp. 59-67.
[8]Dagan, G., 1982,“Stochastic modeling of groundwater flow by unconditional and conditional probabilities. 1. Conditional simulation and the direct problem” , Water Resources Research. vol. 18 (4), pp. 813-833.
[9]Falta, R.W.,1995, “Analytical Solutions for Gas Flow Due to Gas Injection and Extraction from Horizontal Wells”, Ground Water, Vol. 33(2), March-April,
[10]Gelhar, L. W.,1976, Effects of hydraulic conductivity variations on groundwater flows, in: Proceedings , Second International IAHR Symposium on Stochatic Hydraulics,International Association of Hydraulic Research, Lund, Sweden,.
[11]Gelhar, L.W., and Axness, C.L., 1983, “Three-dimensional stochastic analysis of macrodispersion in aquifers” , Water Resources Research, vol. 19(1), pp.161-180.
[12]Gottlieb, J., and P. Dietrich, 1995, “Identification of the permeability distribution in soil by hydraulic tomography”, Inverse Probl, vol. 11, pp. 353–360.
[13]Gvirtzman, H., and S. M. Gorelick, 1992,“The concept of in situ vapor stripping for removing VOCs from groundwater”, Transp. Porous Media, vol. 8(1), pp. 71-92.
[14]Hantush, M.S. 1966, “Analysis of data from pumping test in anisotropic aquifers” , J. Geophys. Res., vol. 71, pp. 421-426.
[15]Herrling, B., and J. Stamm, and W. Buerman, 1991, “Hydraulic circulation system for in-situ bioreclamation and/or in situ remediation of strippable contamination, in In Situ Bioreclamation” Applications and Investigations for Hydrocarbon and Contaminated Site Remediation, edited by R. E. Hinchie and R. F. Olfenbuttel, pp. 173-195, Butterworth-Heinemann, Newton, Mass.
[16]Herrling, B., and Stamm, J., 1992, “Numerical Results of Calculated 3D Vertical Circulation Flows Around Wells with Two Screen Sections for In Situ or On-Site Remediation”. In Numerical Methods in Water Resources. Computational Methods in Water Resources IX., vol. 1, pp. 483-492. Elsevier Applied Science, New York.
[17]Jin-Yong Lee and Kang-Kun Lee, “Analysis of the quality of parameter estimates from repeated pumping and slug tests in fractured aquifer system in Wonju, Korea”, Ground Water, vol. 37, no. 5, pp1531-1537
[18]Kabala, Z. j., and J. Xiang, 1992,“Skin effect and its elimination for single borehole aquifer tests”, in Computational Methods in Water Resource IX, vol. I, Numerical Methods in Water Resource, edited by T. F. Russel, R. E. Ewing, C. A. Brebbia, W. G.. Gray, and G F. Pinder, pp. 467-474, Elsevier Sci., New York.
[19]Kabala, Z. j.,1993 ,”Dipole flow test: A new single-borehole test for aquifer characterization”, Water Resources Research, vol. 29(1), pp. 99-107.
[20]Kruseman, G.P. and de Ridder, N.A., 1990 , Analysis and Evaluation of Pumping Test Data, Second Edition. International Institute for Land Reclamation and improvement, Wageningen, The Netherlands.
[21]Lachassagne, P., E. Ledoux, and G. de Marsily, 1989, “Evaluation of Hydrogeological Parameters in Heterogeneous Porous Media, in Groundwater Management:Quantity and Quality”, IAHS Publ., 188, 3-18.
[22]MacDonald, T.P., and P.K. Kitanidis., 1993,“Modeling of the free surface of an unconfined aquifer near a recirculation well”, Ground Water vol. 31(5), pp. 774-780.
[23]Meier, P. M., J. Carrera, and X. Sanchz-Vila., 1998, “An evaluation of Jacob’s method for interpretation of pumping tests in heterogeneous formations”, Water Resources Research, vol. 34(5), pp. 1011-1025.
[24]Neuman, S.P.,G.R. Walter, H.W. Bentley, J.J. Ward, and D.D.Gonzalez,1984,“Determination of horizontal anisotropy with three wells”,Ground Water, vol. 22, pp. 66-72.
[25]Papadopulos, I. S.,1965, “Nonsteady flow to a well in an infinite anisotropic aquifer, Proc.Dubrovnik Symposium on the Hydrology of Fracture Rocks”. Inter. Assoc. Sci. Hydrology, pp. 12-31.
[26]Philip, R.D., and G. R. Walter, 1992,“Prediction of flow and hydraulic head for vertical circulation well”, Ground Water, vol. 30(5), pp. 765-773.
[27]Sanchez-Vila, X., P. M. Meier, and J. Carrera., 1999, “Pumping test in heterogeneous aquifers:An analytical study of what can be obtained from their interpretation using Jacob’s method”, Water Resources Research, vol. 35(4), pp. 943-952.
[28]Serrano, S. E., 1997, “The Theis Solution in Heterogeneous Aquifers”, Ground Water, vol. 35(3),pp. 463-467.
[29]Smith, L., R.A. Freeze, 1979, “Stochastic analysis of groundwater flow in a bounded domain, 2. Two-dimensional simulations” ,Water Resources Research, vol. 15, pp.1543-1559.
[30]Theis, C.V. 1935,“The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage”, Trans. Amer. Geophys. Union, vol. 16, pp. 519-524.
[31]Yeh, T.-C. J., L. W. Gelhar, and A. L. Gutjahr, 1985, “Stochastic analysis of unsaturated flow in heterogeneous soils: 1. statistically isotropic media”, Water Resources Research, vol. 21(4), pp. 447-456.
[32]Yeh, T.-C. J., L. W. Gelhar, and A. L. Gutjahr, 1985, “Stochastic analysis of unsaturated flow in heterogeneous soils: 2. statistically anisotropic media”, Water Resources Research, vol. 21(4), pp. 457-464.
[33]Zlotnik, V., and G. Ledder.1994. Effect of boundary conditions on dipole flow. In Computational Methods in Water Resources X, vol. 2, ed. A. Peters et al., 907-914. Norwell, Massachusetts: Kluwer Acad.
[34]Zlotnik, V., and G. Ledder. 1996. Theory of dipole flow in uniform anisotropic aquifers. Water Resources Research 32, no. 4: 11191128.
[35]Zlotnik, V., and B. R. Zurbuchen.,1998, “Dipole Probe: Design and Field Applications of a Single-Borehole Device for Measurements of Vertical Variations of Hydraaulic Conductivity”, Ground Water, vol. 36(6), pp. 884-893.
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔