(3.236.118.225) 您好!臺灣時間:2021/05/17 09:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蔡正國
研究生(外文):Cheng-Kuo Tsai
論文名稱:複合奈米碳管吸附水溶重金屬污染物之應用研究
論文名稱(外文):A Study of Adsorption of Dissolved Heavy Metal Ions by Composite Carbon Nanotubes
指導教授:洪肇嘉洪肇嘉引用關係
指導教授(外文):Jao-Jai Horng
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:141
中文關鍵詞:脫附重金屬奈米碳管吸附
外文關鍵詞:carbon nanotubesadsorptiondesorptionHeavy Metal
相關次數:
  • 被引用被引用:31
  • 點閱點閱:754
  • 評分評分:
  • 下載下載:103
  • 收藏至我的研究室書目清單書目收藏:0
複合奈米碳管吸附水溶重金屬污染物之應用研究

學生:蔡正國 指導教授:洪肇嘉博士

國立雲林科技大學環境與安全衛生工程系碩士班

摘要
本研究使用之奈米碳管為附著於氧化鋁載體表面之複合奈米碳管(CNTs/Ni-Fe/Al2O3),乃利用無電鍍原理金屬化表面再以化學氣相沈積法生長,其製備成本較低且操作性佳,本研究並比較該材料與粉末活性碳及商用奈米碳管(CNTs)吸附鎘、銅及鉛重金屬離子,綜合探討其吸附模式及其物化特性。
複合奈米碳管之奈米管徑約在80-100 nm,比表面積為18.61 m2/g,沈降試驗發現商用奈米碳管易成凝聚狀態而沈降,而複合奈米碳管則能分散於溶液,能混合及提高吸附處理效率。複合奈米碳管為良好去除水中重金屬污染之介質,吸附重金屬離子之吸附量時複合奈米碳管(Pb2+ 67.11 mg/g 、Cu2+ 26.59 mg/g、Cd2+ 8.89 mg/g)較粉末活性炭及商用奈米碳管為佳。以三個吸附模式迴歸實驗數據,較符合Langmuir等溫單層吸附模式,較不符合多層吸附模式(BET)。評估其動力模式反應,發現複合奈米碳管吸附Pb+2、Cu+2、Cd+2等金屬離子較吻合二階反應,增加複合奈米碳管劑量其吸附能力增加顯著,以0.2 g吸附劑量吸附水中40 mg/l的銅及鉛金屬離子80 %以上。
探討粉末活性碳、商用奈米碳管及複合奈米碳管吸附混合Pb2+-Cu2+-Cd2+三金屬離子之競爭性,其競爭性吸附趨勢皆為Pb2+>Cu2+>Cd2+,而以複合奈米碳管吸附Pb2+金屬離子後之脫附再生試驗,以硝酸及鹽酸為脫附液之再生率隨酸溶液濃度增加而增加,其中以0.5N硝酸在六次吸附/脫附之再生率仍可達90%。
The Study of Adsorption of Heavy Metals from aqueous Solution by Composite Carbon Nanotubes


Student: Cheng-Kuo Tsai Advisor: Dr. Jao-Jia Horng

Institute of safety Health and Environmental Engineering
National Yunlin University of Science and Technology

ABSTRACT

Carbon Nanotubes (CNTs) were grown on alumina oxide (α- Al2O3 ) after deposited Fe-Ni nanoparticles by chemical vapor deposition method to form CNT/Fe-Ni/ Al2O3 composite particles. Composite particles would be fabricated at low price, easy handling and had higher adsorption capacities of Pb+2, Cu+2 and Cd+2 than these of active carbon powders (PAC) and merchant CNTs.
The composite CNTs were at sizes of micrometer length and with tube diameters of 80-100 nm. The sinking tests showed that merchant CNTs would aggregate fast while composite particles could disperse in solution to enhance mixing efficiency. The experimental results revealed that the composite particles were good adsorbent with capacities of Pb2+ 67.11 mg/g 、Cu2+ 26.59 mg/g、Cd2+ 8.89 mg/g, respectively. In this study the adsorption capacities of Pb+2, Cu+2 and Cd+2 were regressed by three adsorption models and Langmuir isotherm model showed good fit. The multi-layers adsorption (BET) was not accepted. The kinetic mechanism of adsorption by composite particles was found to be second order. The adsorption efficiency of 40 mg/l Pb2+、Cu2+ could reach 80% at 0.2 g dosage.
The affinity order of competitive adsorption of three metal ions onto active carbon powders, merchant CNTs and composite particles were the same of Pb+2> Cu+2> Cd+2. The recovery of composite particles could still reach 90 % by 0.5 N nitrite even after six adsorption/regenerate cycles.
目錄
一、緒論 1
1-1 緣起與研究動機 1
1-2 研究目的 2
1-3 研究架構 3
二、文獻回顧 5
2-1 重金屬來源及其影響 5
2-1.1重金屬危害特性 6
2-1.2重金屬物化性質 8
2-2 吸附理論 12
2-2.1物理吸附 12
2-2.1化學吸附 13
2-2-3等溫吸附模式 14
2-2-3.1 Langmuir Isotherm 14
2-2-3.2 Freundlich isotherm 15
2-2-3.3 BET吸附等溫模式 15
2-2-3.4 Redlich and Peterson model 16
2-2-3.5動力吸附模式 17
2-3奈米碳管簡介 19
2-3.1合成奈米碳管技術 21
2-3.2奈米碳管生長機制 26
2-3.3奈米碳管特性及應用領域 29
2.4探討奈米碳管去除環境中污染之效果 32
2-4.1探討奈米碳管去除有機污染物 33
2-4.2探討奈米碳管去除無機重金屬污染物 36
2-4.3奈米材料之吸附模式探討 40
三、研究材料與方法 43
3-1 實驗材料與藥品 43
3-2 實驗儀器設備 44
3-3本研究實驗概述 44
3-4 吸附材料 46
3-4.1粉末活性碳 46
3-4.2商用奈米碳管 46
3-4.3複合多壁奈米碳管 46
3-5 實驗方法 48
3-5-1吸附劑之物理/化學特性分析 49
3-5-1.1表面界達電位測定 49
3-5-1.2比表面積分析(BET) 50
3-5-1.3場發射掃瞄式電子顯微鏡(FE-SEM)分析 50
3-5-1.4穿透式電子顯微鏡(TEM)分析 50
3-5-1.5晶相測定 (XRD) 51
3-5.2等溫吸附重金屬實驗 52
3-5-2.1單一金屬吸附研究 53
3-5-2.2平衡吸附實驗 53
3-5-2.3 pH 對吸附效應實驗 54
3-5-2.4劑量效應對重金屬離子吸附評估 54
3-5-2.5三種重金屬離子之競爭性吸附評估 54
3-5-2.6複合奈米碳管脫附再生試驗 55
3.6 樣品分析之QA/QC 55
3-6.1 pH量測分析 55
3-6.2界達電位分析 55
3-6.3重金屬離子分析 57
四、結果與討論 58
4-1物理性質分析 58
4-1.1吸附劑表面型態分析 58
4-1.2比表面積分析 59
4-1.3複合奈米碳管及商用奈米碳管XRD分析 64
4-1.4商用奈米碳管及複合奈米碳管之沈降試驗 65
4-1.5表面界達電位分析 67
4-2 重金屬吸附實驗 69
4-2.1平衡吸附探討 69
4-2.2各吸附劑對單一金屬離子吸附實驗 72
4-2.3各吸附劑對金屬鉛、銅及鎘動力吸附實驗 85
4-2.4金屬離子在各種吸附劑表面吸附反應實驗 89
4-2.5金屬離子於各吸附劑之不同劑量下吸附效應評估實驗 92
4-2.6金屬離子於各吸附劑之競爭性吸附反應評估 95
4-2-6.1金屬離子於活性碳之競爭性吸附 95
4-2-6.2金屬離子於商用奈米碳管之競爭性吸附 98
4-2-6.3金屬離子於複合奈米碳管之競爭性吸附 100
4-2.7重金屬吸附脫附再生實驗 104
4-3 製備奈米碳管與活性碳之成本評估 106
五、結論與建議 108
5-1 結論 108
5-2 建議 109
六、參考文獻 111
附錄一、平衡吸附實驗之各吸附劑吸附金屬子之含量與去除率 120
附錄二、各吸附劑對金屬離子之吸附實驗 122
附錄三、金屬離子在各吸附劑表面吸附反應之PH影響評估 124
附錄四、金屬離子於各吸附劑之不同劑量下吸附效應評估 126
附錄五、金屬離子於各吸附劑之競爭性吸附反應評估 128
附錄六、QA/QC 134
六、參考文獻
Adewunmi, C.O., Becker, W., Kuehnast, O., and Oluwole, F. (1996) “Accumulation of copper, lead and cadmium in freshwater snails in southwestern Nigeria ,” Science of the Total Environment., Vol. 193, 69.
Amelinckx, S., Zhang, X. B., Bernaerts, D., Zhang, Z. F., Ivanov, V., Nagy, J. B. (1994) “A formation mechanism for catalytically grown helix shaped graphite nanotubes,” Science, Vol. 265, 635.
An HK, Park B.Y., Kim D. S. (2001) “Crab shell for the removal of heavy metals from aqueous solution, ” Water Research, Vol. 35, 3551-3556.
Bachtold, A., Hadley, P., Nakanishi, T., Dekker, C. (2001) “Logic circuits with carbon nanotube transistors,” Science, Vol. 294, 1317.
Baker, R. T. K. (1989) “Catalytic growth of carbon filaments,” Carbon, Vol. 27, 315.
Bethune, D. S., Kiang, C. H., Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., Beyers, R. (1993) “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,” Nature (London), Vol. 363, 605.
Calderon, J., Navarro, M. E., Jimenez-Capdeville, M. E, Santos-Diaz, M.A., Golden, A., Rodriguez-Leyva, I., Borja-Aburato, V., Diaz-Brriga, F. (2001) “Exposure to Arsenic and Lead and Neuropsychological Development in Mexican Children,” Environmental. Research, Vol. 85, 69.
Charlier, J. C., Blase, X., Vita, A. D., Car, R. (1999) “Electronic structure at carbon nanotube tips,” Appl. Phys. A, Vol. 68, 267.
Charlier, J. C., Vita, A., Blase, X., Car, R. (1997) “Microscopic growth mechanisms for carbon nanotubes,” Science, Vol. 275, 646.
Che, G., Lakshmi, B. B., Fisher, E. R., Martin, C. R. (1998) “Carbon nanotubule menbranes for electrochemical energy storage and production,” Nature, Vol. 393, 346.
Chiron, N., Guilet, R., and Deydier, E. (2003) “Adsorption of Cu and Pb onto grafted silica: isotherms and kinetic moldes,” Water Research , Vol. 37, 3079-3086.
Christian, T. C., Catherine, H. F., Porte, A. D. (2003) “Removal of Cd(II) and Pb(II) irons, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris,” Journal of Hazardous Materials B, Vol. 105, 121-142.
Christian, V., Fauduet, H., Porte, C., Delacroix, A. (2003) “Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris, ” Journal of Hazardous Materials B, Vol. 105, 121-142.
Colins, G. and Avours, P. (2001) “Nanotubes for electronics, Scientific American,” 38-45.
Collins, P. C., Arnold, M. S., Avouris, P. (2001) “Engineering carbon nanotubes and nanotube circuits using electrical breakdown,” Science , Vol. 292, 706.
Dillon, A. C., Jones, K. M.,. Bekkendahl, T. A, Kiang, C. H., Bethune, D. S., Heben, M. J. (1997) “Storage of hydrogen in singlewalled carbon nanotubes,” Nature, Vol. 386, 377.
Ebbesen, T. W.and Ajayan P. M. (1992) “Large-scale synthesis of carbon nanotubes,” Nature (London), Vol. 358, 220.
Faur-Brasquet, C., Reddad, Z. and Kadirvelu, K. (2002) “Modeling the adsorption of metal ions ( Cu+2, Ni+2, Pb+2 ) onto ACCs using surface complexation models,” Applied Surface Science, Vol. 196, 356-365.
Forstner, U. and Wittmann, G.. T.(1981) “Metal Pollution in the Aquatic Environment,” Springer Verlag, New York.
Friberg, L., Nordberg, G. F., Vouk, B.(1979) “Handbook on the Toxicology of Metals,” Elsevier, Amsterdam.
Gao, B., Kelinhammes, A., Tang, X. P., Bower, C., Wu, Y., Zhou, O.(1999) “Electrochemical intercalation of single-walled carbon nanotubes with lithium,” Chem. Phys. Lett., Vol. 307, 153.
Guo, T., Nikolaev, B., Rinzler, A. G., Tomanek, D., Colbert, D. T., Smalley, R. E. (1995) “Self-assembly of tubular fullerenes,” J. Phys. Chem., Vol. 99 ,1694.
Hiroki, A., Satoshi O., Kunio U., Toshiki K., Motoo Y. (2002) “Carbon nanotube synthesis using colloidal solution of metal nanoparticales,” Physica B, Vol. 323, 306-307.
Horng, Jao-Jai and Hsieh,Shu-Huei (2004)“The Reaction Mechanism of Decomposing Chloroform by Bi-metalic Nano-Particles of Fe-Ni”, 227th National Meeting and Exposition, America Chemistry Society.
Horng, Jao-Jai , Hsieh, Shu-Huei and Tsai, Cheng-Kuo (2004)“Using aluminum oxides as carriers for carbon nanotubes to remove lead and other heavy metals”, 228th National Meeting and Exposition, America Chemistry Society.
Hsieh, Shu-Huei, Horng, Jao-Jai and Tsai, Cheng-Kuo (2004) “ Synthesized Composite Carbon Nanotubes to Remove Lead and other Heavy Metals ”, International Symposium on Environmental Nanotechnology.
Iijima, S (1991) “Helical microtubules of graphitic carbon,” Nature (London), Vol. 354, 56.
Iijima, S. and Ichihashi, T. (1993) “Single-shell carbon nanotubes of 1-nm diameter,” Nature (London), Vol. 363, 603.
Iijima, S., Ajayan, P. M., Ichihashi, T. (1992) “Growth model for carbon nanotubes,” Phys. Rev. Lett., Vol. 69, 3100.
Iijima, S., Ichihashi, T., Ando Y. (1992) “Pentagons”, Nature (London), Vol. 356, 776.
Ishigami, M., Cumings, J., Zettl, A. (2000) “A Simple method for the continuous production of carbon nanotubes,” Chemical Physis Letters, Vol. 319, 457-459.
Ivanov, V., Nagy, J. B.,. Lambin, P. H., Lucas, A., Zhang, X. B., Zhang, X. F., Bernaerts, D., Tendeloo, G. V., Amelinckx, S., Landuyt, J. (1994) “The study of carbon nanotubules produced by catalytic method,” Chem. Phys. Lett., Vol. 223, 329.
Journet, C., Maser, W. K., Bernier, P., Loiseau, A., Lamy M., Chapelle, D. L., Lefrant, S., Deniard, P., Lee, R., and Fischer, J. E. (1997) “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature (London), Vol. 388, 756.
Kajiura, H., Nandyala, A., Bezryadin, A. (2005) “Quasi-ballistic electron transport in as-produced and annealed multiwall carbon nanotubes,” Carbon, Vol. 43, 1317-1339.
Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F., Dai, H. (1998) “Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers,” Nature (London), Vol. 395, 878.
Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., Smalley, R. E. (1985) “C60: buckminsterfullerene,” Nature, Vol. 318, 162.
Li, W. Z., Xie, S. S., Qian, L. X., Chang, B. H., Zou, B. S., Zhou, W. Y., Zhao, R .A., Wang, G. (1996) “Large-scale synthesis of aligned carbon Nanotubes,” Science, Vol. 274, 1701.
Li, Y. H., Di, Z., Ding , Z., Wu, D., Luan, Z., Zhu, Y. (2005) “Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes, ”Water Research, Vol. 39, 605-609.
Li, Y. H., Ding, J., Luan, Z., Di, Z., Zhu, Y., Xu, C., Wu, D. W. (2003) “Competitive adsorption of Pb2+ , Cu2+ , Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes,” Carbon, Vol. 41, 2787-2792.
Li, Y. H., Wang, S., Cao, A.(2001) “Adsorption of fluoride from watwr by amorphous alumina supported on carbon nanotubes,” Ckemical Physics Letters, Vol. 350, 412-416.
Li, Y. H., Wang, S., Luan, Z. (2003) “Adsorption of cadmium(Ⅱ)from aqueous solution by surface oxidized carbon nanotubes,” Carbon, Vol. 41, 1057-1062.
Li, Y. H., Wang, S., Wei, J., Zhang, X., Xu, Cailu., Luan, Z., Wu, D., Wei, B.(2002) “Lead adsorption on carbon nanotubew,” Chemical Physics Letter, Vol. 357, 263-266.
Li, Y. H., Wang, S., Zhang, X., Wei, J., Xu, C., Luan, Z., Wu, D.(2003) “Adsorption of fluoride from water by aligned carbon nanotubes,” Materials Research Bulletin, Vol. 38, 469-476.
Long, R. Q. and Yang, R. T. (2001) “Carbon Nanotubes as Superior Sorbent for Dioxin Removal,” J. Am. Chem. Soc. Vol. 123, 2058-2059.
Lu, C., Chung, Y. L. and Chang, K. F. (2005) “ Adsorption of trihalomethanes from water with carbon nanotubes,” Water Research, Vol. 39, 1183-1189.
Lu, Y., Zhu, Z. P. and Liu, Z. Y. (2004) ‘Effect of catalyst on the growth of carbon nanotubes using a detonation approach,” Carbon, Vol. 42, 1885-1889.
Maiti, A., Brabec, C. J. and Bernholc, J. (1997) “Kinetics of metal-catalyzed growth of single-walled carbon nanotubes,” Phys. Rev. B, Vol. 55, 6097.
Maiti, A., Brabec, C. J., Roland, C. M., Bernholc, J. (1995) “Theory of carbon nanotube growth,” Phys. Rev. B, Vol. 52, 14850.
Mohan, D. and Singh K.P. (2002) “ingle- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste,” Carbon, Vol. 36, 2304–2318.
Morrill, L. G., Mahilum, B. C. and Mohiuddin, S. H. (1982) "Sorption, Degradation and Persistence, in Organic Compounds in Soils,” Ann Arbor Sci. Publishers, Ann Arbor, Michigan.
Nakazawa, S., Yokomori, T. and Mizomoto, M. (2005) “Flame synthesis of carbon nanotubes in a wall stagnation flow,” Chemical Physics Letter, Vol. 403, 158-162.
Nriagu, Jerome O., (1998) “Clair Patterson and Robert Kehoe''s Paradigm of “Show Me the Data” on Environmental Lead Poisoning,” Emvironmental Resesrch, Vol. 78, 71-78.
Ongi Englander et al. (2003) “Local synthesis of silicon nanowires and carbon nanotubes on microbridges,” Applied Physics Letters, Vol. 82, 4797.
Peng, X., Li, Y., Luan, Z., Di, Z.,Wang, H., Tian, B., Jia, Z. (2003) “Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes,” Chemical Physics Letter, Vol. 376, 154-158.
Popov, Valentin N. (2004) “Carbon nanotubes: properties and application,” Materials Science and Engineering,Vol. 43, 61–102.
Qin, L.C. and Iijima, S. (1997) “Structure and formation of raft-like bundles of single-walled helical carbon nanotubes produced by laser evaporation,” Chem. Phys. Lett., Vol. 269, 65-71.
Reddad, Z., Gerente, C., Andres, Y., Le, C. P. (2002) “Adsorption of Several Metal Ions onto a Low-Cost Biosorbent : Kinetic and Equilibrium Studies, ” Environmental Sciences andTechnology, Vol. 36, 2067 – 2073.
Richard J. W. (1997) “Hazardous Wastes: Sources, Pathways, Receptors,” John Wiley & Sons , U.S.A, 122-123.
Rinzler, A. G., Hafner, J. H., Nikolaev, P., Lou, L., Kim, S. G., Tomanek, D., Nordlander, P., Colbert, D. T., Smalley, R. E. (1995) “Unraveling nanotubes: field emission from an atomic wire,” Science, Vol. 269, 1550.
Rowlinson J. S. and Swinton F. L. (1982) “Liquids and Liquid Mixtures,” Butterworths, London.
Ruthven D. M. (1984) “Principle of Adsorption and adsorption Process, ” John Willey and Sons.
Schrick, B., Hydustsky, B. W., Blough, J. L. and Mallouk, T. E. (2004) “Delivery Vehicles for Zerovalent Metal Nanoparticles in Soil and Groundwater,” Chem. Mater., Vol. 16, 2187-2193.
Sinnott, S.B., Andrews, D. Qian, Rao, A. M., Dickey, E. C., and Derbyshire, F. (1999) “Model of carbon nanotube growth through chemical Vapor deposition.”, Chem. Phys. Lett.,Vol. 315, 25.
Smith, L. A., et al., (1995) “Remedial Options for Metal-Contaminated Sites,” CRC Press Inc., United States.
Snoeyink, V. L., and Jenkins, Daivd. (1982) “Water Chemistry,” Xin & Zhi Inc., Taipei.
Song, D. I., and Shin, W. S. (2005) “ Three –Parameter Empirical Isotherm Model:Its Application to Sorption onto Organoclays,” Environ. Sci. Technol, Vol. 39, 1138-1143.
Stumm Werner and Morgan James J. (1981) “ Aquatic Chemistry-An Introduction Emphasizing Chemical Equilibrai in Natural Waters, ” Second Edition, Californai.
Sures, B. and Siddall, R. (2001) “Comparison between lead accumulation of Pomphorhynchus laevis (Palaeacanthocephala) in the intestine of chub (Leuciscus cephalus) and in the body cavity of goldfish (Carassius auratus auratus),” International Journal for Parasitology, Vol. 31, 669.
Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H.,. Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomane´k. D., Fischer, J. E., Smalley, R. E. (1996) “Crystalline ropes of metallic carbon nanotubes,” Science, Vol. 273, 483.
Tibbetts, G. G. (1989) “Vapor-grown carbon fibers: status and prospectus,” Carbon, Vol. 27, 745.
Vivekchand, S.R.C., Cele, L.M., Deepak, F.L., Raju, A.R., Govindaraj, A. (2004) “Carbon nanotubes by nebulized spray pyrolysis,” Chemical Physics Letters, Vol. 386, 313-318.
Weber, W. J. and Digiano, F. A. (1996) “ Process Dynamics in Environmental Systems,” John wiley & Sons, Inc. , New York.
Yacaman, M. J., Yoshida, M. M., Rendon, L., Santiesteban, J. G. (1993) “Catalytic growth of carbon microtubules with fullerenestructure,” Appl. Phys. Lett., Vol. 62, 202.
Zhang, F.,Shen, J., Sun, J.,Zhu, Y. Q., Wang, G., McCartney, G. (2005) “Concersion of carbon nanotubes to diamond by spark plasma sintering,” Carbon., Vol. 43, 1254-1258.
Zhang, Y. F., Gamo, M. N., Xiao C. Y. and Ando T. (2002) “Liquid phase synthesis of carbon nanotubes,” Physica B, Vol. 323, 293-295.
成會明、張勁燕,2004,奈米碳管-奈米研究與應用系列,五南圖書出版股份有限公司,台北。
吳惠銘,1999,電動法處理鉛、鉻、鎘污染土壤之研究,國立雲林科技大學,碩士論文。
李元堯,2003,”21世紀的尖端材料-奈米碳管”,化工技術。
李澤鳴,1998,化學復育法對污染壤壤溶液重屬濃度及麥吸收重屬之影響,國立台灣大學,碩士論文。
林振華、黃廷合,2003,奈米技術入門,全華科技圖書股份有限公司,台北。
林鴻明,2003,奈米碳管之特性與應用,奈米論壇(六),臺北。
邱煥宗,2005,奈米碳管吸附水中二價鋅離子之研究,中興大學,碩士論文。
洪肇嘉、蔡正國、謝淑惠,2005,複合奈米碳管吸附重金屬之模式及特性探討,第二屆環境保護與奈米科技技術研討會。
徐志明,2003,以三層模式模擬氧化鋁表面競爭吸附行為之研究,國立雲林科技大學,碩士論文。
陳武清,1999,酸淋洗土壤中重金屬之研究,元智大學,碩士論文。
陳錕榮,2000,重金屬污染場址調查與復育技術評估之研究,國立雲林科技大學,碩士論文。
陳靜生等,1992,水環境化學,曉園出版社有限公司,初版,台北。
章裕民,1998,環境工程化學,文京圖書有限公司,初版,台北。
劉吉平、郝向陽,2003,奈米科學與技術,世茂出版社,初版,台北。
歐育憲,2000,土壤重屬污染物之生物有效性意義研究,逢甲大學,碩士論文。
蔡正國、謝淑惠、洪肇嘉,2004,奈米碳管/氧化鋁(CNTs/Al2O3)吸附鉛及其他重金屬之效果探討,第一屆環境保護與奈米科技技術研討會。
賴俊成,2003,混合酸淋洗處理土壤重金屬之研究,國立雲林科技大學,碩士論文。
鍾耀磊,2003,奈米碳管吸附自來水中三鹵甲烷之研究,中興大學,碩士論文。
鍾耀磊、張冠甫、盧重興,2004,”奈米碳管吸附自來水中三鹵甲烷之研究”,第一屆環境保護與奈米科技學術研討會。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 宋秉明(1995),「生態觀光之規劃架構--以綠島為例」,《觀光研究學報》(台北),1(3),頁45-52。
2. 吳宗瓊(2002),「淺談生態旅遊」,《應用倫理研究通訊》(台北),24,頁54-59。
3. 吳英明(1996),「公共行政的民主原則與效率原則」,《中國行政評論》,2(2),頁137-150。吳佩瑛、葉淑琦(1996),「多環境品質改善之效益分析—各種福利衡量指標之比較」,《經濟論文》(台北),24,第4期,頁47-54。
4. 江明修(1996),「社區意識與公民參與」,《教育研究》(台北),51,頁41-52。
5. 王鴻濬(1997),「非市場財貨的經濟評估論述-以戶外遊憩的自然環境為例」,《戶外遊憩研究》(台北),10(4),頁1-6。
6. 宋秉明(1996),「綠島發展生態觀光之規劃」,《戶外遊憩研究》(台北),9(4),頁31-40。
7. 汪真滿、陳凱俐(2000),「遊憩資源之遊憩效益評估—以宜蘭縣為例」,《宜蘭技術學報》(宜蘭),5,頁91-104。
8. 洪慎憶、凌德麟(1995),「影響遊客對生態旅遊態度因子之探討-以陽明山國家公園為例」,《戶外遊憩研究》(台北),8(3),頁103-128。
9. 郭城孟(2002),「台灣生態旅遊之特性及其展望」,《應用倫理研究通訊》(台北),24,頁45-49。
10. 陸雲(1990),「環境資源估價之研究-非市場評估法」,《經濟論文》(台北),18(1),頁93-135。
11. 陳其南(1998),「社區總體營造的永續發展策略」,《社教資料雜誌》(台北),241,頁5-7。
12. 劉吉川(1997),「黑面腑O棲息地遊憩使用之經濟價值」,《戶外遊憩研究》(台北), vol.10(4),頁19-39。
13. 鄭先祐(2002),「生態旅遊的基本主張與核心價值」,《應用倫理研究通訊》(台北),24,頁60-65。
14. 鄭蕙燕(2003),「生態旅遊經濟效益之評估方法與實例」,《林業研究專訊》(台北),10(2),頁1-4。
15. 鄭蕙燕、闕雅文(1997),「鰲鼓海岸溼地遊憩經濟價值評估」,《戶外遊憩研究》(台北),vol.10(4),頁7-18。