跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 01:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許明琮
研究生(外文):Min-Tzung Shiu
論文名稱:射頻磁控濺鍍法製備TiO2及TiO2-xNx光觸媒薄膜之研究
論文名稱(外文):The study on preparation and structural characterization of TiO2 and TiO2-xNx photocatalytic thin films by RF magnetron sputtering
指導教授:楊肇政楊肇政引用關係
指導教授(外文):Chao-Chen Yang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業化學與災害防治研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:112
中文關鍵詞:光觸媒薄膜射頻磁控濺鍍法接觸角氮掺雜
外文關鍵詞:TiO2RF Magnetrong SputteringN2
相關次數:
  • 被引用被引用:24
  • 點閱點閱:670
  • 評分評分:
  • 下載下載:116
  • 收藏至我的研究室書目清單書目收藏:1
本研究是以射頻濺鍍法(RF Magnetrong Sputtering)製備具有銳鈦礦(anatase)晶形的二氧化鈦(TiO2)光觸媒薄膜與氮摻雜之二氧化鈦(TiO2-XNX)光觸媒薄膜。利用XRD、FE-SEM、AFM、UV-Vis Spectrum等儀器分析薄膜之結構及特性,並探討濺鍍壓力(Pt)、沉積時間(t)和氣體流量(ψ and Γ)等參數變化對於二氧化鈦光觸媒薄膜結構及特性的影響。另外,藉由水與薄膜間的接觸角變化及亞甲基藍溶液的分解測試,進行TiO2及TiO2-XNX薄膜的親水性及光催化活性之評估,進而探討出最佳的鍍膜參數。
依XRD的實驗結果顯示,在不同的製備參數下,TiO2薄膜的結晶構造大多是屬於anatase與rutile的混合晶形,於較低的濺鍍壓力下,是以rutile晶型為主,隨著濺鍍壓力的增加,anatase結晶強度有明顯增加之趨勢。另外,氧氣的添加量也會影響薄膜的結晶構造,隨著氧氣流量的增加,anatase晶型強度亦會隨之增強。由SEM與AFM的分析結果可知,氧氣流量增加時薄膜的粗糙度會隨之增大,但過量時則有減小的趨勢,乃因為氧氣會形成負離子,受到陰極電場的加速,獲得高能量後撞擊基材,當表面受大量的氧負離子撞擊時,則會導致粗糙度下降。當氮氣添加及流量的改變時會影響TiO2-XNX薄膜的吸收波長、anatase的結晶強度及薄膜的表面粗糙度。
依薄膜的親水性與亞甲基藍光分解試驗顯現,TiO2薄膜的親水性隨濺鍍壓力與氧氣流量的增加而提升,當濺鍍壓力12 mtorr、氧氣流量比為0.6、沉積時間90分鐘等條件下所製備之TiO2薄膜,經紫外光照射20分鐘後,有助於提升薄膜之親水性,水的接觸角可下降至10°以下。在光催化活性測試方面,經紫外光照射21小時後,對亞甲基基藍的光分解效率可達90%以上。經氮氣的摻雜後的TiO2-XNX薄膜,其親水性有明顯的提升,濺鍍壓力8 mtorr、氮氣流量比0.020、沉積時間90分鐘等條件下製備之TiO2-XNX薄膜,亦具備良好的親水性質,且其吸收波長偏移至460nm的可見光區。
The main purpose of this subject is to describe titanium dioxide (TiO2) and nitrogen doped titanium dioxide (TiO2-XNX) photocatalytic thin films that are prepared by reactive RF magnetron sputtering on the glass substrates without additional external heating. The polycrystalline structure and surface morphology of the thin films were investigated by using X-Ray Diffraction(XRD), Field Emission Scanning Electron Microscope(FE-SEM), Atomic Force Microscope(AFM) and UV/Vis absorption spectrometer, and the effects of the sputtering pressure, deposition time, and oxygen partial pressure on the polycrystalline structure and characteristics of TiO2 and TiO2-XNX thin films were studied. In addition, water contact angle and the degradation of methylene blue aqueous solution were used to evaluate the photocatalytic activity of TiO2 and TiO2-XNX thin films, and then determined the optimum process parameters.
The XRD pattern indicated that the crystalline structure of TiO2 thin films were anatase and rutile mixture structure at the different parameters. At the low sputtering pressure, TiO2 major crystalline structure was mainly rutile crystal, but the intensity of anatase crystalline was increased with rising of the sputtering pressure. Moreover, the crystalline structure of TiO2 thin films was affected by the addition of the oxygen gas flow, and the intensity of anatase crystalline structure is increased with rising of the oxygen gas flow as well. The surface morphologies of TiO2 films were observed with AFM and SEM techniques. The result showed that the surface roughness of TiO2 thin films increased with increasing of the oxygen gas flow, but decreased once the oxygen gas flow went beyond the limit. The anions of oxygen atoms were accelerated by the electric field of the cathode, and bombarded the substrate with kinetic energy. The surface roughness for TiO2 thin films would decrease with the anions of oxygen atoms bombardment. Addition of nitrogen gas and the variation of nitrogen flow change would affect the absorption wavelength, anatase crystalline intensity, and the surface roughness of TiO2 thin films.
According to the results of water contact angle and degradation of methylene blue of TiO2 photocatalytic thin films, the hydrophilic of TiO2 film increased with rising of the sputtering pressure and the oxygen gas flow. The TiO2 thin films were prepared under the conditions of sputtering pressure at 12 mtorr, oxygen gas flow ratio at 0.6, and deposited time of 90 minutes. After UV-light treatment for 20 minutes, the thin films possess hydrophilic property and the water contact angle was dropped down to 10 degree. On the other hand, after the UV-light treatment for 21 hours, the degradation of methylene blue of TiO2 photocatalytic thin film could reach up to 90%. The TiO2-XNX thin films was prepared under the conditions of sputtering pressure at 8 mtorr, nitrogen gas flow ratio at 0.020, deposited time of 90 minutes. The TiO2-XNX thin film also revealed excellent hydrophilic property, and the absorption wavelength was shifted to the range of visible light.
目錄

中文摘要------------------------------------------------------------------------------------- Ⅰ
英文摘要------------------------------------------------------------------------------------- Ⅲ
誌謝------------------------------------------------------------------------------------------- Ⅴ
目錄------------------------------------------------------------------------------------------- Ⅵ
表目錄---------------------------------------------------------------------------------------- Ⅸ
圖目錄---------------------------------------------------------------------------------------- Ⅹ
第一章 緒論-------------------------------------------------------------------------------- 1
1-1 前言------------------------------------------------------------------------------------- 1
1-2 研究目的及內容---------------------------------------------------------------------- 2
1-2-1 研究目的------------------------------------------------------------------------ 2
1-2-2 研究內容------------------------------------------------------------------------ 4

第二章 文獻回顧-------------------------------------------------------------------------- 5
2-1光觸媒介紹----------------------------------------------------------------------------- 5
2-2半導體光催化效應-------------------------------------------------------------------- 6
2-3二氧化鈦之介紹----------------------------------------------------------------------- 9
2-3-1二氧化鈦的結構及特性------------------------------------------------------- 10
2-3-2二氧化鈦光催化反應原理---------------------------------------------------- 13
2-3-3二氧化鈦光觸媒的製備方法------------------------------------------------- 16
2-4二氧化鈦的改質----------------------------------------------------------------------- 27
2-4-1觸媒光催化效率的提升------------------------------------------------------- 27
2-4-2可見光光觸媒------------------------------------------------------------------- 30
2-5 二氧化鈦的應用與發展------------------------------------------------------------- 32
2-6二氧化鈦的超親水性質-------------------------------------------------------------- 35

第三章 實驗內容與方法----------------------------------------------------------------- 38
3-1 研究內容------------------------------------------------------------------------------- 38
3-2實驗藥品與材料----------------------------------------------------------------------- 41
3-3實驗儀器--------------------------------------------------------------------------------- 42
3-4二氧化鈦薄膜之製備------------------------------------------------------------------ 45
3-4-1 TiO2薄膜製備------------------------------------------------------------------- 45
3-4-1-1基材前處理-------------------------------------------------------------- 48
3-4-1-2 SiO2鍍層製備----------------------------------------------------------- 49
3-4-1-3 TiO2薄膜製備----------------------------------------------------------- 50
3-4-1-4 TiO2-xNx光觸媒薄膜之製備------------------------------------------ 51
3-4-2光觸媒薄膜結構與性能之分析----------------------------------------------- 53
3-4-3二氧化鈦薄膜固液相光分解效率測定-------------------------------------- 58
3-4-4二氧化鈦光觸媒薄膜的親水性測試----------------------------------------- 64

第四章 結果與討-------------------------------------------------------------------------- 65
4-1TiO2光觸媒薄膜的性質分析--------------------------------------------------------- 66
4-1-1沉積時間與結晶型態的關係-------------------------------------------------- 66
4-1-1-1 XRD分析---------------------------------------------------------------- 68
4-1-1-2 SEM & AFM分析------------------------------------------------------ 71
4-1-2濺鍍壓力、氧氣流量比與TiO2薄膜特性之關係------------------------- 74
4-1-2-1 XRD 分析------------------------------------------------------------- 78
4-1-2-2 SEM & AFM分析---------------------------------------------------- 84
4-1-2-3 SEM之橫截面觀察--------------------------------------------------- 96
4-1-2-3 UV-Vis 光譜分析----------------------------------------------------- 97
4-2 TiO2光觸媒薄膜的光催化效率及親水性之量測-------------------------------- 102
4-2-1 TiO2薄膜親水性之量測------------------------------------------------------- 102
4-2-2 TiO2薄膜的光催化效率------------------------------------------------------- 108
4-3 TiO2-xNx光觸媒薄膜的性質分析--------------------------------------------------- 110
4-3-1討濺鍍壓力與氮氣流量對TiO2薄膜的影響------------------------------ 110
4-3-1-1 XRD分析-------------------------------------------------------------- 112
4-3-1-2 SEM & AFM分析---------------------------------------------------- 115
4-3-1-3 UV-Vis光譜分析----------------------------------------------------- 122

4-4 TiO2-xNx光觸媒薄膜的光催化效率及親水性之量測---------------------------
125
4-4-1 TiO2-xNx薄膜親水性之量測-------------------------------------------------- 125
4-4-1-1 TiO2-xNx薄膜在可見光照射時親水性之變化--------------------------- 127
4-4-2 TiO2-xNx薄膜的光催化效率-------------------------------------------------- 128

第五章 結論與未來研究方向----------------------------------------------------------- 131
5-1結論--------------------------------------------------------------------------------------- 131
5-2未來研究方向--------------------------------------------------------------------------- 134

參考文獻------------------------------------------------------------------------------------- 135
自述------------------------------------------------------------------------------------------- 143



















表目錄

Table 2-1 Anatase和Rutile物理性質之比較表--------------------------------------- 11
Table 2-2氧化劑相對位能比較表------------------------------------------------------- 15
Table 2-3硫酸法和氯化法製備TiO2之的比較表------------------------------------ 17
Table 2-4光觸媒研究開發史------------------------------------------------------------- 33
Table 2-5光觸媒的應用概況------------------------------------------------------------- 35
Table 3-1 SiO2層的鍍膜參數------------------------------------------------------------- 50
Table 3-2 TiO2薄膜的濺鍍參數---------------------------------------------------------- 51
Table 3-3 TiO2-xNx薄膜的濺鍍條件----------------------------------------------------- 52
Table 3-4亞甲基藍的特性與結構------------------------------------------------------ 58
Table 4-1 TiO2薄膜製備參數------------------------------------------------------------- 67
Table 4-2二氧化鈦薄膜的製備條件(1)------------------------------------------------- 67
Table 4-3二氧化鈦薄膜的製備條件(2)------------------------------------------------- 73
Table 4-4分析TiO2薄膜的儀器及使用目的之列表---------------------------------- 81
Table 4-5二氧化鈦薄膜的製備條件(3)------------------------------------------------- 82
Table 4-6 TiO2-xNx薄膜的濺鍍條件----------------------------------------------------- 123
Table 4-7 TiO2-xNx薄膜的濺鍍條件----------------------------------------------------- 123
Table 4-8不同實驗條件下,TiO2-xNx薄膜之UV-Vis吸收波長------------------- 141











圖目錄

Fig. 2-1 絕緣體、半導體、導体的典型導電度範圍---------------------------------- 7
Fig. 2-2 能隙圖概述:(a)絕緣體;(b)半導體;(c)導體---------------------------------- 7
Fig. 2-3半導體能隙圖--------------------------------------------------------------------- 8
Fig. 2-4 二氧化鈦電極電解水裝置示意圖-------------------------------------------- 9
Fig. 2-5 TiO2之晶格結構------------------------------------------------------------------ 12
Fig. 2-6 二氧化鈦之分子鍵結方式----------------------------------------------------- 12
Fig. 2-7 二氧化鈦光觸媒照光激發之氧化還原反應示意圖----------------------- 15
Fig. 2-8 氬氣離子撞擊靶材示意圖----------------------------------------------------- 23
Fig. 2-9 典型的直流鍍膜系統的構造示意圖----------------------------------------- 24
Fig. 2-10 典型射頻濺鍍系統的構造示意圖------------------------------------------ 25
Fig. 2-11 TiO2被激發後電子、電洞的行徑示意圖---------------------------------- 28
Fig. 2-12 金屬改質後半導體內電子、電洞的行徑示意圖-------------------------- 29
Fig. 2-13 週期表中常被用來改質二氧化鈦的金屬元素--------------------------- 29
Fig. 2-14 太陽光的光譜圖--------------------------------------------------------------- 30
Fig. 2-15 TiO2-CdS複合半導體的光激發程序示意圖------------------------------- 31
Fig. 2-16 二氧化鈦在環境淨化上主要的應用--------------------------------------- 33
Fig. 2-17 二氧化鈦親水性的機制------------------------------------------------------ 36
Fig. 2-18 接觸角量測計算的示意圖--------------------------------------------------- 37
Fig. 3-1 研究架構圖----------------------------------------------------------------------- 40
Fig. 3-2 可見光燈管波長分佈圖-------------------------------------------------------- 45
Fig. 3-3 濺鍍機的簡單示意圖----------------------------------------------------------- 46
Fig. 3-4 溅鍍機的外觀-------------------------------------------------------------------- 47
Fig. 3-5 玻璃基材前處理步驟----------------------------------------------------------- 49
Fig. 3-6 實驗流程圖----------------------------------------------------------------------- 53
Fig. 3-7 掠角X光繞射法的幾何關係示意圖----------------------------------------- 54
Fig. 3-8 光電子發生原理之示意圖----------------------------------------------------- 57
Fig. 3-9 亞甲基藍之UV-Vis吸收光譜圖---------------------------------------------- 59
Fig. 3-10亞甲基藍濃度與吸收度之關係圖(最大吸收波峰位置665nm)--------- 60
Fig. 3-11 亞甲基藍光分解反應機制---------------------------------------------------- 62
Fig. 3-12 液相光分解反應系統示意圖------------------------------------------------ 63
Fig .3-13 動態接觸角儀器裝置示意圖------------------------------------------------ 64
Fig. 4-1 濺鍍壓力5mtorr、沉積時間30分鐘、不同氧氣流量比之TiO2薄膜
XRD分析圖,(a)ψ=0.2、(b)ψ=0.4、(c)ψ=0.6、(d)ψ=0.7------------ 68
Fig. 4-2 濺鍍壓力8mtorr、沉積時間30分鐘、不同氧氣流量比之TiO2 薄膜 XRD分析圖,(a)ψ=0.2、(b)ψ=0.4、(c)ψ=0.6、(d)ψ=0.7---------- 69
Fig. 4-3 沉積時間60分鐘、氧氣流量比為0.6下,不同濺鍍壓力之TiO2薄
膜XRD分析圖(a)Pt=2mtorr、(b)Pt=5mtorr、(c)Pt=8mtorr、
(d)Pt=12mtorr--------------------------------------------------------------------- 70
Fig. 4-4 沉積時間90分鐘、氧氣流量比為0.6下,不同濺鍍壓力之TiO2薄
膜XRD分析圖(a)Pt=2mtorr、(b)Pt=5mtorr-------------------------------- 71
Fig. 4-5 在Pt = 5 mtorr,ψ= 0.6,D.T.= 30min的鍍膜條件下,TiO2薄膜之
AFM分析圖--------------------------------------------------------------------- 72
Fig. 4-6 在Pt = 5 mtorr,ψ= 0.6,D.T.= 60min的鍍膜條件下,TiO2薄膜之
AFM分析圖---------------------------------------------------------------------- 73
Fig. 4-7 在Pt = 5 mtorr,ψ= 0.6,D.T.= 90min的鍍膜條件下,TiO2薄膜之
AFM分析圖---------------------------------------------------------------------- 73
Fig. 4-8 在Pt = 5 mtorr,ψ= 0.6,D.T.= 30min的鍍膜條件下,TiO2薄膜之
AFM分析圖---------------------------------------------------------------------- 72
Fig. 4-9 在Pt = 5 mtorr,ψ= 0.6,D.T.= 60min的鍍膜條件下,TiO2薄膜之
AFM分析圖---------------------------------------------------------------------- 73
Fig. 4-10 在Pt = 5 mtorr,ψ= 0.6,D.T.= 90min的鍍膜條件下,TiO2薄膜之
AFM分析圖-------------------------------------------------------------------- 73
Fig. 4-11 在Pt=5mtorr、ψ= 0.6的條件下,TiO2的表面粗糙度與沉積時間的
關係------------------------------------------------------------------------------ 74
Fig. 4-12 濺鍍壓力2mtorr、沉積時間90分鐘、不同氧氣流量比之TiO2薄
膜XRD分析圖,(a)ψ=0.2、(b)ψ=0.4、(c)ψ=0.6、(d)ψ=0.7----- 81
Fig. 4-13 濺鍍壓力5mtorr、沉積時間90分鐘、不同氧氣流量比之TiO2薄
膜XRD分析圖,(a)ψ=0.2、(b)ψ=0.4、(c)ψ=0.6、(d)ψ=0.7----- 82
Fig. 4-14 濺鍍壓力8mtorr、沉積時間90分鐘、不同氧氣流量比之TiO2 薄
膜XRD分析圖,(a)ψ=0.2、(b)ψ=0.4、(c)ψ=0.6、(d)ψ=0.7---- 82
Fig. 4-15 濺鍍壓力12mtorr、沉積時間90分鐘、不同氧氣流量比之TiO2薄
膜XRD分析圖,(a)ψ=0.2、(b)ψ=0.4、(c)ψ=0.6、(d)ψ=0.7---- 83
Fig. 4-16 不同濺鍍壓力下,TiO2薄膜中anatase(101)含量百分比隨氧氣流
量比(ψ)之變化,圖中◆代表Pt=2mtorr,■代表Pt=5mtorr,
▲代表Pt=8 mtorr,╳代表Pt=12 mtorr------------------------------------ 83
Fig. 4-17 不同濺鍍壓力下,TiO2薄膜中Rutile(110)含量百分比隨氧氣流量
比(ψ)之變化,圖中◆代表Pt=2mtorr,■代表Pt=5mtorr,
▲代表Pt=8 mtorr,╳代表Pt=12 mtorr------------------------------------ 84
Fig. 4-18在Pt = 2 mtorr,ψ= 0.2,D.T.= 90min的鍍膜條件下,TiO2薄膜之SEM分析圖--------------------------------------------------------------------- 86
Fig. 4-19在Pt = 2 mtorr,ψ= 0.4,D.T.= 90min的鍍膜條件下,TiO2薄膜之SEM分析圖--------------------------------------------------------------------- 86
Fig. 4-20在Pt = 2 mtorr,ψ= 0.6,D.T.= 90min的鍍膜條件下,TiO2薄膜之SEM分析圖--------------------------------------------------------------------- 87
Fig. 4-21在Pt = 2 mtorr,ψ= 0.7,D.T.= 90min的鍍膜條件下,TiO2薄膜之SEM分析圖--------------------------------------------------------------------- 87
Fig. 4-22在Pt = 2 mtorr,ψ= 0.2,D.T.= 90min的鍍膜條件下,TiO2薄膜之AFM分析圖--------------------------------------------------------------------- 86
Fig. 4-23在Pt = 2 mtorr,ψ= 0.4,D.T.= 90min的鍍膜條件下,TiO2薄膜之AFM分析圖--------------------------------------------------------------------- 86
Fig. 4-24在Pt = 2 mtorr,ψ= 0.6,D.T.= 90min的鍍膜條件下,TiO2薄膜之AFM分析圖--------------------------------------------------------------------- 87
Fig. 4-25在Pt = 2 mtorr,ψ= 0.7,D.T.= 90min的鍍膜條件下,TiO2薄膜之AFM分析圖--------------------------------------------------------------------- 87
Fig. 4-26濺鍍壓力為2 mtorr下,氧氣流量比(ψ)與粗糙度的關係-------------- 88
Fig. 4-27在Pt = 5 mtorr,ψ= 0.2,D.T.= 90min的鍍膜條件下,TiO2薄膜之SEM分析圖--------------------------------------------------------------------- 88

Fig. 4-28在Pt = 5 mtorr,ψ= 0.4,D.T.= 90min的鍍膜條件下,TiO2薄膜之SEM分析圖---------------------------------------------------------------------

89
Fig. 4-29在Pt = 5 mtorr,ψ= 0.6,D.T.= 90min的鍍膜條件下,TiO2薄膜之SEM分析圖--------------------------------------------------------------------- 89
Fig. 4-30在Pt = 5 mtorr,ψ= 0.7,D.T.= 90min的鍍膜條件下,TiO2薄膜之SEM分析圖--------------------------------------------------------------------- 90
Fig. 4-31在Pt = 5 mtorr,ψ= 0.2,D.T.= 90min的鍍膜條件下,TiO2薄膜之AFM分析圖--------------------------------------------------------------------
88
Fig. 4-32在Pt = 5 mtorr,ψ= 0.4,D.T.= 90min的鍍膜條件下,TiO2薄膜之AFM分析圖-------------------------------------------------------------------- 89
Fig. 4-33在Pt = 5 mtorr,ψ= 0.6,D.T.= 90min的鍍膜條件下,TiO2薄膜之AFM分析圖--------------------------------------------------------------------- 89
Fig. 4-34在Pt = 5 mtorr,ψ= 0.7,D.T.= 90min的鍍膜條件下,TiO2薄膜之AFM分析圖--------------------------------------------------------------------- 90
Fig. 4-35濺鍍壓力為5 mtorr下,氧氣流量比(ψ)與粗糙度的關係--------------- 90
Fig. 4-36在Pt = 8 mtorr,ψ= 0.2,D.T.= 90min的鍍膜條件下,TiO2薄膜之SEM分析圖--------------------------------------------------------------------- 91
Fig. 4-37在Pt = 8 mtorr,ψ= 0.4,D.T.= 90min的鍍膜條件下,TiO2薄膜之SEM分析圖--------------------------------------------------------------------- 91
Fig. 4-38在Pt = 8 mtorr,ψ= 0.6,D.T.= 90min的鍍膜條件下,TiO2薄膜之SEM分析圖--------------------------------------------------------------------- 92
Fig. 4-39在Pt = 8 mtorr,ψ= 0.7,D.T.= 90min的鍍膜條件下,TiO2薄膜之SEM分析圖--------------------------------------------------------------------- 92
Fig. 4-40在Pt = 8 mtorr,ψ= 0.2,D.T.= 90min的鍍膜條件下,TiO2薄膜之AFM分析圖-------------------------------------------------------------------- 91
Fig. 4-41在Pt = 8 mtorr,ψ= 0.4,D.T.= 90min的鍍膜條件下,TiO2薄膜之AFM分析圖--------------------------------------------------------------------- 91
Fig. 4-42在Pt = 8 mtorr,ψ= 0.6,D.T.= 90min的鍍膜條件下,TiO2薄膜之AFM分析圖--------------------------------------------------------------------- 92

Fig. 4-43在Pt = 8 mtorr,ψ= 0.7,D.T.= 90min的鍍膜條件下,TiO2薄膜之AFM分析圖--------------------------------------------------------------------

92
Fig. 4-44濺鍍壓力為8 mtorr下,氧氣流量比(ψ)與粗糙度的關係--------------- 93
Fig. 4-45在Pt = 12 mtorr,ψ= 0.2,D.T.= 90min的鍍膜條件下,TiO2薄膜之SEM分析圖--------------------------------------------------------------------- 93
Fig. 4-46在Pt =12 mtorr,ψ=0.4,D.T.= 90min的鍍膜條件下,TiO2薄膜之AFM分析圖--------------------------------------------------------------------- 94
Fig. 4-47在Pt =12 mtorr,ψ=0.6,D.T.= 90min的鍍膜條件下,TiO2薄膜之AFM分析圖--------------------------------------------------------------------- 94
Fig. 4-48在Pt =12 mtorr,ψ=0.7,D.T.= 90min的鍍膜條件下,TiO2薄膜之AFM分析圖--------------------------------------------------------------------- 95
Fig. 4-49在Pt = 12 mtorr,ψ= 0.2,D.T.= 90min的鍍膜條件下,TiO2薄膜之AFM分析圖--------------------------------------------------------------------- 93
Fig. 4-50在Pt = 12 mtorr,ψ= 0.4,D.T.= 90min的鍍膜條件下,TiO2薄膜之AFM分析圖-------------------------------------------------------------------- 94
Fig. 4-51在Pt = 12 mtorr,ψ= 0.6,D.T.= 90min的鍍膜條件下,TiO2薄膜之AFM分析圖-------------------------------------------------------------------- 94
Fig. 4-52在Pt = 12 mtorr,ψ= 0.7,D.T.= 90min的鍍膜條件下,TiO2薄膜之AFM分析圖-------------------------------------------------------------------- 95
Fig. 4-53濺鍍壓力為12 mtorr下,氧氣流量比(ψ)與粗糙度的關係------------ 95
Fig. 4-54不同濺鍍壓力下,TiO2薄膜之沉積速率隨氧氣流量比(ψ)之變化,圖中╳代表Pt=2 mtorr,▲代表Pt=5 mtorr,■代表Pt=8 mtorr,
◆代表Pt=12 mtorr------------------------------------------------------------- 96
Fig. 4-55 在濺鍍壓力8 mtorr、沉積時間90分鐘下,TiO2薄膜之橫截面圖,
(a)ψ=0.2、(b)ψ=0.4、(c)ψ=0.6、(d)ψ=0.7---------------------------- 97
Fig. 4-56無SiO2阻絕層的TiO2薄膜之UV-Vis吸收光譜圖------------------------ 99
Fig. 4-57濺鍍壓力為8 mtorr時,不同氧氣流量比下的TiO2薄膜之UV-Vis
吸收光譜圖---------------------------------------------------------------------- 99
Fig. 4-58濺鍍壓力為12 mtorr時,不同氧氣流量比下的TiO2薄膜之UV-Vis
吸收光譜圖---------------------------------------------------------------------- 100
Fig. 4-59在氧氣流量比(ψ)為0.2時,不同濺鍍壓力下TiO2薄膜之UV-Vis
吸收光譜圖---------------------------------------------------------------------- 100
Fig. 4-60在氧氣流量比(ψ)為0.6時,不同濺鍍壓力下TiO2薄膜之UV-Vis
吸收光譜圖---------------------------------------------------------------------- 101
Fig. 4-61在氧氣流量比(ψ)為0.7時,不同濺鍍壓力下TiO2薄膜之UV-Vis
吸收光譜圖---------------------------------------------------------------------- 101
Fig. 4-62在Pt=2mtorr、ψ=0.2~0.7、D.T.= 90min的鍍膜條件下,經
紫外線照射後,TiO2薄膜接觸角之變化,圖中◆代表ψ=0.2,
■代表ψ=0.4,×代表ψ=0.6, ▲代表ψ=0.7-------------------------- 103
Fig. 4-63在Pt=5mtorr、ψ=0.2~0.7、D.T.= 90min的鍍膜條件下,經
紫外線照射後,TiO2薄膜接觸角之變化,圖中◆代表ψ=0.2,
■代表ψ=0.4,×代表ψ=0.6, ▲代表ψ=0.7----------------------------

104
Fig. 4-64在Pt=8mtorr、ψ=0.2~0.7、D.T.= 90min的鍍膜條件下,經
紫外線照射後,TiO2薄膜接觸角之變化,圖中◆代表ψ=0.2,
■代表ψ=0.4,×代表ψ=0.6, ▲代表ψ=0.7---------------------------- 104
Fig. 4-65在Pt=12mtorr、ψ=0.2~0.7、D.T.= 90min的鍍膜條件下,經
紫外線照射後,TiO2薄膜接觸角之變化,圖中◆代表ψ=0.2,
■代表ψ=0.4,×代表ψ=0.6, ▲代表ψ=0.7---------------------------- 105
Fig. 4-66在Pt = 2 mtorr,ψ= 0.4 ,D.T.=90min鍍膜條件下,TiO2薄膜經紫外線照射後,接觸角之變化---------------------------------------------------- 106
Fig. 4-67在Pt = 5 mtorr,ψ= 0.6 ,D.T.=90min鍍膜條件下,TiO2薄膜經紫外線照射後,接觸角之變化---------------------------------------------------- 106
Fig. 4-68在Pt = 8 mtorr,ψ= 0.6 ,D.T.=90min鍍膜條件下,TiO2薄膜經紫外線照射後,接觸角之變化---------------------------------------------------- 107
Fig. 4-69在Pt = 12 mtorr,ψ= 0.6 ,D.T.=90min鍍膜條件下,TiO2薄膜經紫外線照射後,接觸角之變化-------------------------------------------------- 107
Fig. 4-70濺鍍壓力8mtorr,不同氧氣流量比(ψ)下,TiO2薄膜之亞甲基藍
光分解效率圖,圖中◆代表ψ=0.2,■代表ψ=0.4,╳代表ψ=0.6,
▲代表ψ=0.7------------------------------------------------------------------- 109

Fig. 4-71濺鍍壓力12mtorr,不同氧氣流量比(ψ)下,TiO2薄膜之亞甲基藍
光分解效率圖,圖中◆代表ψ=0.2,■代表ψ=0.4,╳代表ψ=0.6,
▲代表ψ=0.7-------------------------------------------------------------------


109
Fig. 4-72濺鍍壓力8mtorr、沉積時間90分鐘、不同氮氣流量比之TiO2-XNX
薄膜XRD分析圖,(a)Γ=0、(b)Γ=0.005、(c)Γ=0.010、(d)Γ=0.015、
(e)Γ=0.020----------------------------------------------------------------------- 113
Fig. 4-73濺鍍壓力12mtorr、沉積時間90分鐘、不同氮氣流量比之TiO2-XNX
薄膜XRD分析圖,(a)Γ=0、(b)Γ=0.005、(c)Γ=0.010、 (d)Γ=0.015、
(e)Γ=0.020----------------------------------------------------------------------- 114
Fig. 4-74不同濺鍍壓力下,TiO2-XNX薄膜中anatase(101)含量百分比隨氮氣
流量比(Γ)之變化圖,圖中■代表Pt=8 mtorr,▲Pt=12 mtorr----------- 114
Fig. 4-75在Pt=8 mtorr、Γ= 0、D.T.= 90min濺鍍條件下,TiO2-XNX薄膜之
SEM分析圖---------------------------------------------------------------------
116
Fig. 4-76在Pt=8mtorr、Γ= 0.005、D.T.= 90min濺鍍條件下,TiO2-XNX薄膜之SEM分析圖------------------------------------------------------------------ 116
Fig. 4-77在Pt=8mtorr、Γ= 0.010、D.T.= 90min濺鍍條件下,TiO2-XNX薄膜之SEM分析圖------------------------------------------------------------------ 117
Fig. 4-78在Pt=8 mtorr、Γ=0.015、D.T.= 90min濺鍍條件下,TiO2-XNX薄膜之SEM分析圖----------------------------------------------------------------- 117
Fig. 4-79在Pt=8mtorr、Γ= 0.020、D.T.= 90min濺鍍條件下,TiO2-XNX薄膜之SEM分析圖------------------------------------------------------------------ 118
Fig. 4-80在Pt = 8 mtorr、Γ= 0、D.T.= 90min濺鍍條件下,TiO2-XNX薄膜之AFM分析圖--------------------------------------------------------------------- 116
Fig. 4-81在Pt=8 mtorr、Γ=0.005、D.T.= 90min濺鍍條件下,TiO2-XNX薄膜之AFM分析圖----------------------------------------------------------------- 116
Fig. 4-82在Pt=8mtorr、Γ= 0.010、D.T.= 90min濺鍍條件下,TiO2-XNX薄膜之AFM分析圖----------------------------------------------------------------- 117
Fig. 4-83在Pt=8mtorr、Γ= 0.015、D.T.= 90min濺鍍條件下,TiO2-XNX薄膜之AFM分析圖----------------------------------------------------------------- 117

Fig. 4-84在Pt=8mtorr、Γ= 0.020、D.T.= 90min濺鍍條件下,TiO2-XNX薄膜之AFM分析圖-----------------------------------------------------------------

118
Fig. 4-85濺鍍壓力為8 mtorr下,氮氣流量比(Γ)與TiO2-XNX薄膜粗糙度之
關係------------------------------------------------------------------------------- 118
Fig. 4-86在Pt = 12 mtorr、Γ= 0、D.T.= 90min濺鍍條件下,TiO2-XNX薄膜之SEM分析圖--------------------------------------------------------------------- 119
Fig. 4-87在Pt=12mtorr、Γ= 0.005、D.T.= 90min濺鍍條件下,TiO2-XNX薄膜之SEM分析圖------------------------------------------------------------------ 119
Fig. 4-88在Pt=12mtorr、Γ= 0.010、D.T.= 90min濺鍍條件下,TiO2-XNX薄膜之SEM分析圖------------------------------------------------------------------ 120
Fig. 4-89在Pt=12mtorr、Γ= 0.015、D.T.= 90min濺鍍條件下,TiO2-XNX薄膜之SEM分析圖------------------------------------------------------------------ 120
Fig. 4-90在Pt=12mtorr、Γ= 0.020、D.T.= 90min濺鍍條件下,TiO2-XNX薄膜之SEM分析圖------------------------------------------------------------------ 121
Fig. 4-91在Pt = 12 mtorr、Γ= 0、D.T.= 90min濺鍍條件下,TiO2-XNX薄膜之AFM分析圖--------------------------------------------------------------------- 119
Fig. 4-92在Pt=12mtorr、Γ= 0.005、D.T.= 90min濺鍍條件下,TiO2-XNX薄膜之AFM分析圖----------------------------------------------------------------- 119
Fig. 4-93在Pt=12mtorr、Γ= 0.010、D.T.= 90min濺鍍條件下,TiO2-XNX薄膜之AFM分析圖----------------------------------------------------------------- 120
Fig. 4-94在Pt=12mtorr、Γ= 0.015、D.T.= 90min濺鍍條件下,TiO2-XNX薄膜之AFM分析圖------------------------------------------------------------------ 120
Fig. 4-95在Pt=12mtorr、Γ= 0.020、D.T.= 90min濺鍍條件下,TiO2-XNX薄膜之AFM分析圖----------------------------------------------------------------- 121
Fig. 4-96濺鍍壓力為12 mtorr下,氮氣流量比(Γ)與TiO2-XNX薄膜粗糙度之關係------------------------------------------------------------------------------- 121
Fig. 4-97不同濺鍍壓力下,TiO2-XNX薄膜之沉積速率隨氮氣流量比(Γ)之變化,圖中■代表Pt=8 mtorr,▲代表Pt=12 mtorr------------------------- 122
Fig. 4-98濺鍍壓力8 mtorr、沉積時間90min下,氮氣流量比(Γ)與TiO2-XNX薄膜之UV-Vis吸收光譜圖--------------------------------------------------- 123
Fig. 4-99濺鍍壓力8 mtorr、沉積時間90min下,氮氣流量與 TiO2-XNX薄膜之UV-Vis吸收光譜圖--------------------------------------------------------- 124
Fig. 4-100在Pt=8 mtorr、Γ=0 ~0.020、D.T.=90min濺鍍條件下,TiO2-xNx薄
膜接觸角之變化,圖中◆代表Γ=0,■代表Γ=0.005,
▲代表Γ=0.010,×代表Γ=0.015, ●代表Γ=0.020-------------------- 126
Fig. 4-101在Pt=12 mtorr、Γ=0~0.020、D.T.=90min實驗條件下,TiO2-xNx
薄膜接觸角之變化,圖中◆代表Γ=0,■代表Γ=0.005,
▲代表Γ=0.010,×代表Γ=0.015, ●代表Γ=0.020-------------------- 126
Fig. 4-102在Pt=8 mtorr、Γ=0.005、D.T.=90min實驗條件下,TiO2-xNx薄膜在可見光燈源照射時接觸角之變化-------------------------------------- 127
Fig. 4-103在Pt=12 mtorr、Γ=0.020、D.T.=90min實驗條件下,TiO2-xNx薄膜在可見光燈源照射時接觸角之變化-------------------------------------- 128
Fig. 4-104濺鍍壓力8 mtorr,不同氮氣流量比(Γ)下TiO2-xNx薄膜之亞甲基藍光分解效率圖,圖中◆代表Γ=0,■代表Γ=0.005,▲代表Γ=0.010,×代表Γ=0.015, ●代表Γ=0.020------------------------------------------ 129
Fig. 4-105濺鍍壓力12mtorr,不同氮氣流量比(Γ)下TiO2-xNx薄膜之亞甲基藍光分解效率圖,圖中◆代表Γ=0,■代表Γ=0.005,▲代表Γ=0.010
,×代表Γ=0.015, ●代表Γ=0.020----------------------------------------

130
參考文獻

1.施敏,半導體元件物理與製作技術,張俊彥譯著,高立圖書
2.B. G. Kyle , Chemical and Process Thermodynamics , 3 rd ed., Prentice-Hall (1999)
3.Jeremy K. Burdett . , Timothy Hughbank , Gordon J. Miller , James W. Richardson , Joseph V. Smiyh , J. Am. Chem. Soc. 109 (1987) 3639
4.A. Sclafani , J. H. Herrmann , J. Phys. Chem. 100 (1996) 13655
5.A. Sclafani , L. Palmisano , M. Schiavello , J. Phys. Chem. 94 (1990)829
6.Iis Sopyan, Mitsuru Watanabe, Sadao Murasawa, Kazuhito Hashimoto, Akira Fujishima , Journal of Photochemistry and Photobiology A: Chemistry 98 (1996).
7.磁控濺鍍TiO2-WO3複合膜光催化性質之研究,成功大學,碩士論文(2003)
8.H.Lin , S. Kumon , H. Kozuka , T. Yoko , Thin solid Films 315 (1998) 266
9.J. Wang , S. Uma , K. J. Klabunde , Applied Catalysis B: Emvironmental 48 (2004) 151
10.K. Murali Krishna , Md. Mosaddeq-ur-Rahman , Takeshi Miki , Tetsuo Soga , Kazuo Igarashi , Sakae Tanemura , Masayoshi Umeno , Applied Surface Dcience 113/114 (1997) 149
11.Ying Ma , Jian-bin Qiu , Ya-an Cao , Zi-shen Guan , Jian-nian Yao , Chemosphere 44 (2001) 1087
12.Jiaguo Yu , Xiujian Zhao , Materials Research Bulletin 35 (2000) 1293
13.Jiefang Zhu , Wei Zheng , Bin He , Jinlong Zhang , Masakazu Anpo , Journal of Molecular Catalysis A : Chemical 216 (2004) 35
14.L. M. Williams , D. W. Hess , J. Vac. Sci. Technol.A 1 (1983) 1810
15.Allan Tuan , Meeyoung Yooh , Valentin Medvedve , Yoshi One , Yaniun Ma, Thin Solid Films 377-378 (2000) 766
16.P. Bablon , A.S. Dequiedt , H. Mostefa-Sba , S. Bourgeois , P. Sibillot , M. Sacilotti , Thin Solid Films 322 (1998) 63
17.J. Musil , J. Vleck , Materials Chemistry and physics 54 (1998) 116
18.J. Rodriguez , M. Gomez , J. Ederth G. A. Niklasson , C.G. Graqvist , thin Solid Film 365 (2000) 119
19.Akira Shibata , Kunio Okimura , Yukio Yamamoto , Kakuei Matubara, Jpn. J. Appl. Phys. 32 (1993) 5666
20.M. Gomez , J. Rodriguez , S.-E. Lindquist , C.G. Granqvist , Thin Solid Films 342 (1999) 148
21.S. G. Springer , P.E. Schmid , R. Schmid , R. Sanjines , F. levy , Surface and Coatings Technology 151-152 (2002) 51
22.S. Miyake , K. Honda , T. kohno , Y. Setsubara , M. Satou , A. Chayahara , J. Vac. Sci. technol. A10 (1992)3253
23.P. J. Martin , J. Mater. Sci. , 21 (1986) 1
24.Yu J. , Zhao X. , Zhao Q. Mater. Chem. Phys. 69 (2001) 25
25.J. Livage , in “Sol-Gel Science and Technology”, eds By M. A. Aegeter , M. Jr. Jafelicci , D. F. Souza , E. D. Zantto , World Scientfic , Singapore (1989) 103
26.M. Ohring , The Material Science of The Films , Academic Press (1992)
27.江政忠,真空技術與應用,國科會精密儀器發展中心出版
28.Amy L. Linsebigler , Guangquan Lu , John T. Yates , Jr. , Chem. Rev. 95 (1995) 735
29.J. C. yang , Y. C. kim , Y. G. Shul , C. H. Shin , T. K. Lee , apllied Surface Science 121/122 (1997) 525
30.F. B. Li , X. Z. Li , Chemosphere 48 (2002) 1103
31.E. Sanchez , T. Lopez , Materials Letters 25 (1995) 271
32.K. Zakrzewska , M. radecka , A. Kruk , W. Osuch , Solid state Ionics 157 (2003) 349
33.Donia Beydoun , Rose Amal , Material Science and Engineering B94 (2002) 71
34.Tsutomu Umebayashi , Tetsuya Yamaki , Hisayoshi Itoh , Keisuke Asai , Journal of Physics and Chemistry of Solids 63 (2002) 1909
35.Ping Yang , Cheng Lu , Nanping Hua , Yukou Du , Materials Letters 57 (2002) 794
36.Hongbo Jiang , Lian Gao , Materials Chemistry and Physics 77 (2002) 878
37.I-Hsiang Tseng , Wan-Chen Chang , Jeffrey C.S. Wu , Applied Catalysis B : Environmental 37 (2002) 37
38.Zhihao Yuan , Lide Zhang , Nanstructured Materials Vol.10 No.7 (1998) 1127
39.Zhi-hao Yuan , Jun-hui jia , Li-de Zhang , Materials Chemistry and Physics 73 (2002) 323
40.K. Wike , H. D. Breuer , Journal of Photochemistry and Photobiology A : Chemistry 121 (1999)49
41.Saila Karvinen , Solid State Sciences 5 (2003)811
42.Teruhisa Ohno , Fumihiro Tanigawa , Kan Fujihara , Shinobu Izumi , Michio Matsumura , Journal of Photochemistry and Photobiology A : Chemistry 127 (1999) 107
43.Ashraful Islam , Hideki Sugihara , Kohjiro Hara , Lok Pratap Singh , Ryuzi Katoh , Masatoshi Yanagida , Yoshiaki Takahashi , Shigeo Murata , Hironori Arakawa , Journal of Photochemistry and Photobiology A : Chemistry 145 (2001) 135
44.Mucheal R. Hoffmann , Scot T. Martin , Wonyong Choi , Detlef W. Bahnemann , Chem. Rev. 95 (1995) 69
45.卡田博史,光觸媒圖解,朱旭山 審訂,商周出版
46.T. Ivanova , A. Harizanova , M. Surtchev , Z. Nenova , Solar Energy Materials & Solar Cells 76 (2003) 591
47.T. Ivanova , A. Harizanova , M. Surtchev , Materials Letters 55 (2002) 327
48.Jimmy C. Yu , Jun Lin , Raymund W. M. Kwok , Journal of Photochemistry and Photobiology A : Chemistry 111 (1997) 199
49.K. Kohler , J. Engweiler , A. Baiker , Journal of Molecular Catalysis A : Chemical 162 (2000) 423
50.Teruhisa Ohno , Fumihiro Tanigawa , Kan Fujihara , Shinobu Izumi , Michio Matsumura , Journal of Photochemistry and Photobiology A : Chemistry 118 (1998) 41
51.X.Z. Li , F. B. Li ,C. L. Yang , W. K. Ge , Journal of Photochemistry and Photobiology A : Chemistry 141 (2001) 209
52.Wonyong Choi , Andreas Termin , Michael R. Hoffmann , J. Phys. Chem. 98 (1994) 13669
53.Hiromi Yamashita , Masaru Harada , Junko Misaka , Masato Takeuchi , Keita Ikeue , Maskazu Anpo , Journal of Photochemistry and Photobiology A : Chemistry 148 (2002) 257
54.J. Wang , S. Uma , K.J. Klabunde , Applied Catalysis B : Environmental 48 (2004) 151
55.(a)Gopidas K. R. , Bohorquez M. , Kamat P. V. , J. Phys. Chem. 94 (1994) 6435
56.M. M. Rahman , k. M. Krishna , T. Soga , T. Jimbo , M. Umeno , Journal of Physics and Chemistry of Solids 60(1999) 201
57.R. Asahi , T. Morikawa , T. Ohwaki , K. Aoki , Y. Taga , Science 293 (2001) 269
58.T. Umebayashi , T. Yamaki , H. Itoh , K. Asai , Applied Physics letters 81 (2002) 454
59.Gemma Romualdo Torres , Torbjorn Lindgren , Jun Lu , Claes-Goran Granqvist , Sten-Eric Lindquist , J. Phys. Chem. B 108 (2004) 5995
60.Julius M. Mwabora , Torbjorn Lindgren , Esteban Avendano , Thomas F. Jaramillo , Jun Lu , Claes-Goran Granqvist , Sten-Eric Lindquist , J. Phys. Chem. B 108 (2004) 20193
61.Torbjorn Lindgren , Julius M. Mwabora , Esteban Avendano , Jacob Jonsson , Anders Hoel , Claes-Goran Granqvist , Sten-Eric Lindquist , J. Phys. Chem. B 107 (2003) 5709
62.Oliver Diwald , Tracy L. Thompson , Ed G. Goralski , Scott D. Walck , John T. Yates , Jr. , J. Phys. Chem. B 108 (2004) 52
63.Hiroshi Irie , Yuka Watanabe , Kazuhito Hashimoto , J. Phys. Chem. B 107 (2004) 5483
64.Oliver Diwald , Tracy L. Thompson , Tykhon Zubkov , Ed G. Goralski, Scott D. Walck , John T. Yates , Jr. , J. Phys. Chem. B 108 (2004) 6004
65.Clemens Burda , Yongbing Lou , Xiaobo Chen , Anna C. S. Samia , John Stout , James L. Gole , Nano Letters Vol.3 No.8 (2003) 1049
66.Takeshi Morikawa , Ryoji Ohwaki , Koya Aoki , Yasunori Taga , Jpn. J. Appl. Phys. 40 (2001) L561
67.Naresh C. Saha , Harland G. Tompkins , J. Appl. Phys. 72(7) (1992) 3072
68.黃文魁,洪世淇,王偉洪,奈米光觸媒之發展與市場應用,工研院產經資訊服務中心
69.汪建民主編,材料分析,中國材料科學學會
70.A. Houas, Hinda Lachheb, Mohamed Ksibi, Elimame Elaloui, Chantal Guillard, Jean-Marie Herrmann. Applied Catalysis B: Environmental 31 (2001).
71.P. Jin , L. Miao , S. Tanemura , G. Xu , M. Tazawa , K. Yoshimura , Applied Surface Science 212-213 (2003) 775
72.Dwight R. Acosta , Arturo I. Martinez , Alcidez A. Lopez , Carlos R. Magana , Journal of Molecular Catalysis A : Chemical 228 (2005)183
73.L. Miao , P. Jin , K. Kaneko , A. Terai , N. Nabatova-Gabain , S. Tanemura , Applied Surface Science 212-213 (2003) 255
74.S. K. Zheng , T. M. Wang , G. Xiang , C. Wang , Vacuum 62 (2001) 361
75.B. Karunagaran , R. T. Rajendra Kumar , V. Senthil Kumar , D. Mangalaraj , Sa. K. Narayandass , G. Mohan Rao , Materials Science in Semiconductor Processing 6 (2003) 547
76.B. Karunagaran , R. T. Rajendar Kumar , D. Mangalaraj , Sa. k. Narayandass , G. Mohan Rao , Cryst. Res. Technol. 37 (2002) 1285
77.P. Zeman , S. Takabayashi , Surface and Coatings Technology 153 (2002) 93
78.L. Sirghi , Y. Hatanaka , Surface Science 530 (2003) L323
79.Seon-Hwa Kim , Yong-Lak Choi , Yo-Seung Song , Deuk Yong Lee , Se-Joug Lee , Materials Latters 57 (2002) 343
80.Baoshun Liu , Xiujian Zhao , Qingnan Zgao , Chunling Li , Xin He , Materials Chemistry and Physics 90 (2005) 207
81.S. K. Zheng , G. Xiang , T. M. Wang , F. Pan , C. Wang , W. C. Hao , Vacuum 72 (2004) 79
82.Masatoshi Nakamura , Shinichi Kato , Toru Aoki , Lucel Sirghi , Yoshinori Hatanaka , Journal of Applied Physics 90 (2001) 3391
83.L. Sirghi , T. Aoki , Y. Hatanaka , Thin Solid Films 422 (2002) 55
84.Diana Mardare , M. Tasca , M. Delibas , G. I. Rusu , Applied Surface Science 156 (2000) 200
85.Yassine Bessekhouad , Didier Robert , Jean Victor Weber , Journal of Photochemistry and Photobiology A : Chemistry 157 (2003) 47
86.Silvia Gelover , Pedro Mondragon , Antonio Jimenez , ournal of Photochemistry and Photobiology A : Chemistry 165 (2004) 241
87.Chul Han Kwon , Hyunmin Shin , Je Hum Kim , Woo Suk Choi, Ki Hyun Yoon , Materials Chemistry and Physics 86 (2004) 78
88.Ulrike Diebold , Surface Science Reports 48 (2003) 53
89.呂宗昕,奈米科技與光觸媒, 商周出版
90.徐國財、張立德、張勁燕,奈米複合材料,五南圖書
91.陳富亮,最新奈米光觸媒應用技術,普林斯頓國際有限公司
92.陳皇妃,二氧化鈦光觸媒的製備與殺菌效果之研究,雲林科大,碩士論文(2001)
93.陳益國,二氧化鈦光觸媒奈米粉末之製備及其光催化效果之研究,雲林科大,碩士論文(2003)
94.呂政源,雲林科大,碩士論文(2003)
95.馬振基,奈米材料科技原理與應用,全華科技圖書
96.陽敏麒,離子輔助蒸鍍製備氮和碳摻雜支二氧化鈦光觸媒薄膜作為可見光光觸媒的研究,東華大學,碩士論文(2004)
97.周宏邦,濺鍍二氧化鈦與氮摻雜二氧化鈦薄膜之結構與光觸媒性質研究,東華大學,碩士論文(2004)
98.董俊興,經摻雜之二氧化鈦觸媒膜光分解性質之研究,中央大學,碩士論文(2001)
99.Shahed U. M. Khan , Mofareh Al-Shahry , William B. Iingler Jr , Science 297 (2002) 2243

100.Hiroshi Irie , Kayano Sunada , Kazuhito Hashimoto , Electrochemistry , 12 (2004) 507
101.Lei Miao , Sakae Tanemura , Ping Jin , Kenji Kaneko , Asuka Terai , Nataliya Nabatova-Gabain , Journal of Crystal Growth 254 (2003) 100
102.Guang-Rui Gu , Ying-Ai Li , Yan-Chun Tao , Zhi He , Jun-Jie Li , Hong Yin , Wei-Qin Li , Young-Nian Zhao , Vacuum 71 (2003) 487
103.Lei Miao , Sakae Tanemura , Hiroshige Watanabe , Yukimasa Mori , Kenji Kaneko , Shoichi Toh , Journal of Crystal Growth 260 (2004) 118
104.Diana Mardare , Materials Science and Engineering B95 (2002) 83
105.Kaishu Guan , Surface & Coatings Technology 191 (2005) 155
106.Kunio Okimura , Akira Shibata , Naohiro maeda , Kunihide Tachibana , Youichiro Noguchi , Kouzou Tsuchida , Jpn. J. Appl. Phys. 34 (1995) 4950
107.Song-Zhe Chen , Peng-Yi Zhang , Da-Ming Zhuang , Wan-Peng Zhu , Catalysis Communications 5 (2004) 677
108.Lucel Sirghi, Toru Aoki , Yoshinori Hatanaka , Surface & Coatings Technology 187 (2004) 358
109.M Radecka , Thin Solid Films 451-452 (2004) 98
110.M. H. Suhail , G. mohan Rao , S. Mohan , J. Appl. Phys. 71 (1992) 1421
111.Torbjorn Lindgren , Jun Lu , Anders Hoel , Clase-Goran Granqvist , Gemma Romualdo Torres , Sten-Eric Lindquist , Solar Energy Materials & Solar Cells 84 (2004) 145
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李賢哲 (2001) :以動手做(DIY)工藝的興趣培養中小學童具科學創造力之人格特質。科學教育月刊,243,2-7。
2. 呂金燮 (2003) :創造力教學的本質與陷阱。資優教育季刊,86,1-9。
3. 何月照 (2000) :『變』-行動研究對我行動的影響。教師天地,105,48-54。
4. 成虹飛 (2000) :行動研究的書寫與閱讀-困境與可能性(阿美與阿花的對話錄)。教師天地,105,40-47。
5. 王國華、段曉林、張惠博 (1998) :國中學生對科學教師學科教學之知覺。科學教育學刊,6(4),363-381。
6. 王千倖 (1999) :「合作學習」和「問題導向學習」-培養教師及學生的科學創造力。教育資料與研究,28,31-40。
7. 毛連塭 (1995) :創造力研究的心理學觀。創造思考教育,7,1-6。
8. 毛連塭 (1989) :實施創造思考教育的參考架構。創造思考教育,創刊號,2-9。
9. 洪文東 (1997) :創造性思考與科學創造力的培養。國教天地,123,10-14。
10. 洪文東 (2000) :從問題解決的過程培養學生的科學創造力。屏師科學教育,11,52-62。
11. 洪文東 (2002) :創造型兒童之思考特性與科學創造力的關聯性。屏東師院學報,16,355-394。
12. 洪振方 (1998) :科學創造力之探討。高雄師大學報,9,289-302。
13. 洪振方 (2003) :探究式教學的歷史回顧與創造性探究模式之初探。高雄師大學報,15,641-662。
14. 夏林清 (2000) :行動研究與中、小學教師的相遇。教師天地,105,4-8。
15. 陳曉梅 (2003) :創造思考教學應用於國中生活科技課程之研究。創造思考教育,13,51-53。