(3.237.48.165) 您好!臺灣時間:2021/05/09 13:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖懿倩
研究生(外文):I-chien Liao
論文名稱:改質幾丁聚醣及其奈米複合材料特性之研究
論文名稱(外文):Study on Propertics and Characterizations of Chemical-Modified Chitosan and its Nanocomposites
指導教授:王怡仁王怡仁引用關係
指導教授(外文):Yen-Zan Wang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業化學與災害防治研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:161
中文關鍵詞:幾丁聚醣聚苯胺奈米粒子乳化聚合氣體分離導電度磺化幾丁聚醣
外文關鍵詞:conductivitygas segregationemulsionChitosanSulfonated chitosanDegree of deacetylationpolyaniline nanopartical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究第一部分旨在利用化學方法(磺化技術)改質幾丁聚醣,增加其對水的溶解度,降低有機溶劑的使用量。幾丁聚醣磺化改質則以加入1,3-Propane sultone 對不同去乙醯度的幾丁聚醣進行磺化反應,進而探討不同去乙醯度與不同磺化程度幾丁聚醣之特性,利用FTIR、EA、TGA、MDSC、X-ray、AFM等作特性分析。實驗結果顯示,以FTIR鑑定幾丁聚醣及磺化幾丁聚醣之結構,並以元素分析儀分析其磺化程度為51~86%之間,且隨著磺化程度的增加,使幾丁聚醣對水的溶解性增加,減少有機溶劑使用量。由X-ray圖形顯示,經化學修飾後之幾丁聚醣,在2θ為11゚的結晶峰被減少。
本研究第二部分旨在利用乳化聚合製備聚苯胺奈米粒子。聚苯胺奈米粒子使用陽離子型與陰離子型界面活性劑以乳化聚合的方法合成。並利用UV-VIS、粒徑分析儀、TGA、TEM等作特性分析。實驗結果顯示,Zeta 電位分析證實帶正電荷(PACT)與帶負電荷(PADB)之聚苯胺奈米粒子分別為+52.46mv及-62.74mv,由此可知我們製備出的奈米粒子是相當穩定的。以TEM來觀察所合成的聚苯胺奈米粒子的粒徑為20-80nm之間。以UV-VIS我們探討了苯胺單體與鹽酸的添加量對聚苯胺奈米粒子的穩定性與型態的影響。藉由四點量測儀測定帶正電荷與負電荷的聚苯胺奈米粒子導電度分別為10-3S/cm與10-1S/cm。
本研究第三部份主要探討摻合物形態學。實驗分成兩個系統:首先,將陰離子型與陽離子型聚苯胺奈米粒子依不同比例與幾丁聚醣摻合,探討摻合後薄膜的表面型態及分散情形,利用SEM、TEM、AFM做型態分析。實驗結果顯示,在酸性環境下將聚苯胺奈米粒子與幾丁聚醣摻合,聚苯胺奈米粒子均勻分散在幾丁聚醣膜材中。其次,將聚苯胺奈米粒子利用甲醇洗去外層界面活性劑,將其與幾丁聚醣及化學方法(磺化技術)改質之幾丁聚醣進行摻合。探討幾丁聚醣、磺化幾丁聚醣與聚苯胺奈米粒子依不同比例摻合後,薄膜表面型態及分散情形,利用SEM、TEM、AFM做型態分析。實驗結果顯示,聚苯胺/幾丁聚醣 (PADBD/CS)與聚苯胺/磺化幾丁聚醣(PADBD/SCS)摻合膜,由於幾丁聚醣、磺化幾丁聚醣與聚苯胺奈米粒子失去電荷作用導致強烈相分離。
本研究第四部份主要探討不同去乙醯度與磺化程度的幾丁聚醣,應用於CO2/CH4氣體之分離效益及聚苯胺奈米粒子與幾丁聚醣摻合後的性質探討,利用FTIR、TGA、MDSC、X-ray、四點量測、gas permeability等作特性分析。實驗結果顯示,CO2/CH4的選擇率隨著去乙醯度的增加而增加,卻隨著磺化效應而有降低的趨勢。在聚苯胺/幾丁聚醣摻合膜方面,幾丁聚醣膜材於低聚苯胺含量下即有導電度。
Part I :This thesis addresses the modification of chitosan (CS) via a chemical method (sulfonation), which was intended to improve the solubility in water, reducing the use of organic solvent. Several degree of deacetylated(DD) chitosan were modified by 1.3-propane sultone to form the sulfonated chitosans(SCS), and to confer the degree of deacetylation and sulfonation of chitosan. The characterization of chitosan and modified chitosan were performed by FTIR、EA、 TGA、 MDSC、X-ray. The experimental results show the presence of the characteristic adsorption peak of sulfonation in the FTIR spectrum. From element analysis, the degree of sulfonation of the sulfonated chitosan is estimated to be around 51~86% and the solubility in water increases with the degree of sulfonation but the organic solvent solubility decreases. The X-ray patterns show the crystallinity of the modified chitosans was reduced from the smaller peak area at 11o.
Part II:The main purpose of this research is to prepare polyaniline nanospheres(PADB and PACT) in the presence of the emulsifier. The Polyaniline nanospheres (PA) were polymerized in a conventional micellar solution with Cetyltrimethylammonium bromide (CTAB) or Dodecylbenzene sulfonic acid (DBSA) as the emulsifier. The characterization of PADB and PACT were performed by UV-VIS、dynamic light scattering、TGA、TEM analyzer. The experimental results show that the zeta potential of polyaniline nanospheres were respective –62.74mV and +52.46mV. As the absolute values of zeta potentials of polyaniline’s nanoparticles were over 30mV,the result show that both of them became very stable. The morphological analyses of TEM images revealed that polyaniline nanoparticles particle sizes were between 20~80nm。 The purpose of this project is to discuss the effect of concentration of aniline and hydrochloric on the nanoparticle’s stability and morphology by UV-VIS. From four–probe method measurement, the conductivity of the polyaniline nanospheres are 10-3 S/cm (PACT) and 10-1S/cm(PADB) ,respectively.
Part III :The main purpose of this research is to confer the blend morphology. The experiments were divided into two parts:first one was to prepare a series of polyblends composed of chitosan and anionic(PADBU) and cationic(PACTU) polyaniline with various ratios, and to confer the morphology and dispersion of the membrane. The surface characterization of polyaniline/chitosan was performed by SEM、TEM and AFM. The experimental results show that there are chitosan and polyaniline in the polyblends in the acid environment, the polyaniline nanopartical was homogeneously dispersed in the chtiosan memberane.Secondly, when the surfactant was removed from polyaniline by methanol, it was then blended with various ratios chitosan (PADB/CS) and sulfonation chitosan.(PADBD/SCS) to confer the morphology and dispersion of the membrane. The surface characterization of PADBD/CS and PADBD/SCS was performed by SEM、TEM and AFM. The experimental results show that both PADBD/CS and PADBD/SCS membranes have strong segregation phenomena due to the removal of charge by methanol.

PART IV :The main purpose of this research is to confer the degree and properties of deacetylation and sulfonation of chitosan membranes, both of which are used to increase the gas separation efficiency of CO2/CH4. The characterization of chitosan ,chemical-modified chitosan, and its polyblend with polyaniline were performed by FTIR、TGA、MDSC、X-ray、four-probe method、gas permeability analyzer. The experimental results show that the selectivity coefficients for mixture(CO2/CH4) increase with DD, and decrease when sulfonation effect is present . The strong segregation tendency leads to a conducting network already at low PADBD contents, thus generating a conducting polymer blends.
頁次
誌謝
中 文 摘 要…………………………………………………………… I
英 文 摘 要…………………………………………………………… III
目錄…………………….…………………………………………………… V
表目錄…………………………………………………………………….… VIII
圖目錄………...………………………………………………………..…… IX

第一章 緒論…………………………………………………………...…… 1
1.1 聚摻合物 …………………………………………………...…… 1
1.2 奈米材料 …………………………………………………...…… 2
1.3 薄膜分離 …………………………………………………...…… 3
1.4 實驗動機與目標…………………………………………………... 4

第二章文獻回顧……………………………………………………………. 7
2.1奈米粒子之簡介…………………………………..…………........... 7
2.2 奈米粒子之特性………………………….……………………….. 7
2.2.1表面效應…….……………………………….…………….... 7
2.2.2體積效應……………………………….…….…………….... 7
2.3 微奈米粒子的分散與聚集..………………………………………. 9
2.3.1微奈米粒子的再聚集特性………………………..………... 9
2.3.2微奈米粉體的安定………………………………………….. 10
2.4 幾丁質與幾丁聚醣………………………………………………... 12
2.4.1 幾丁質……………………………………………………… 13
2.4.2 幾丁聚醣…………………………………………………… 13
2.4.3 幾丁聚醣的溶劑系統……………………………………… 14
2.4.4 幾丁聚醣的應用發展……………………………………… 14
2.5 水溶性幾丁聚醣…………………………………………………... 17
2.5.1影響幾丁質類物質水溶性的因素………………………….. 19
2.5.2氫鍵………………………………………………………….. 19
2.5.3去乙醯程度與分子組成…………………………………….. 19
2.5.4分子量……………………………………………………….. 19
2.5.5 水溶性幾丁聚醣的應用…………………………………… 20

2.6 導電高分子………………………………………………………... 21
2.6.1 導點高分子的應用 26
2.7聚苯胺……………………………………………..………............... 27
2.7.1 聚苯胺的反應機制………………………………………… 28
2.8 乳化聚合…………………………………………………………...
2.8.1 原理………………………………………………………… 33
33
2.8.2 乳化聚合的過程…………………………………………… 34
2.8.3 乳化聚合反應之粒子核心形成機構…………...…………. 36
2.8.4 界面活性劑………………………………………………… 37
2.8.5 聚苯胺的乳化聚合…………………………………………. 38
2.9 聚摻合物……………………………………………………………. 41
2.10 溶解擴散模式(Solution-Diffusion Model)………………………... 42

第三章 實驗………………………………………………………………... 46
3.1 藥品………………………………………………………............. 46
3.2 實驗儀器設備………...…………………................................……. 48
3.3 實驗方法………………………………………………..……...… 51
3.3.1 陽離子型聚苯胺粒子之合成…………………………….... 51
3.3.2 陰離子型聚苯胺粒子之合成………………………………. 52
3.3.3 陽離子型聚苯胺粒子/幾丁聚醣摻合膜之製備…………... 53
3.3.4 陰離子型聚苯胺粒子/幾丁聚醣摻合膜之製備…………... 54
3.3.5 磺酸化幾丁聚醣之製備…………………………………… 55
3.3.6 聚苯胺粒子/幾丁聚醣摻合膜之製備……………………... 56
3.3.7 聚苯胺粒子/磺酸化幾丁聚醣摻合膜之製備……………… 57
3.4實驗步驟……………………………………………………………. 58
3.4.1 陽離子型聚苯胺粒子之合成……………………………… 58
3.4.2 陰離子型聚苯胺粒子之合成……………………………… 58
3.4.3 陽離子型聚苯胺粒子/幾丁聚醣摻合膜之製備…………... 58
3.4.4 陰離子型聚苯胺粒子/幾丁聚醣摻合膜之製備…………... 58
3.4.5 幾丁聚醣製膜……………………………………………..... 59
3.4.6 磺酸化幾丁聚醣之合成與薄膜製備……………………..... 59
3.4.6.1 磺酸化幾丁聚醣之合成…………………………… 59
3.4.6.2 磺酸化幾丁聚醣薄膜製備………………………… 59
3.4.7 聚苯胺粒子/幾丁聚醣摻合膜之製備……………………… 59
3.4.8 聚苯胺粒子/磺酸化幾丁聚醣摻合膜之製備……………… 60
3.5儀器測試……………………………………………………………. 60

第四章 結果與討論…………………………………………...……..…..… 64
4.1 第一部份 化學修飾幾丁聚醣及其特性之探討………………….. 64
4.1.1 材料的合成 …………………………………………………. 64
4.1.2 化學結構鑑定………………………………………………... 64
4.1.2.1傅立葉轉換顯微紅外線光譜(FTIR)………………… 64
4.1.2.2變溫傅立葉轉換顯微紅外線光譜(FTIR)……………. 64
4.1.2.3元素分析(EA)………………………………………… 65
4.1.2.4 固態核磁共振光譜(13C-NMR)………...……………. 65
4.1.3 微觀結構分析………………………………………………. 65
4.1.3.1 X光博膜繞射(X-ray)……………………………...… 65
4.1.3.2原子力場顯微鏡(AFM)……………………………… 66
4.1.3.3掃描式電子顯微鏡(SEM)………………………….... 67
4.1.4 熱性質分析…………………………………………………... 67
4.3.4.1熱重分析(TGA)……………………………………… 67
4-3.4.2調幅式微差掃描分析儀(MDSC)……………………. 68
4.2 第二部分 乳化聚合技術製備聚苯胺奈米粒子………………….. 69
4.2.1 聚苯胺奈米粒子部份………………………………………... 69
4.2.2 乳化聚合的機構與結構……………………………………... 69
4.2.3 聚苯胺奈米粒子成長機制…………………………………... 70
4.2.4 聚苯胺之粒徑與zeta電位表面電位測量…………………... 71
4.2.5 TGA分析聚苯胺奈米粒子之結構…………………………... 72
4.2.6 鹽酸的摻雜對聚苯胺粒子導電度之影響…………………... 72
4.3 第三部份 摻合物的型態………………………………………….. 74
4.3.1 摻合物之型態分析…………………………………………... 74
4.3.2.1 陽離子型聚苯胺粒子/幾丁聚醣摻合………………. 74
4.3.1.2 陰離子型聚苯胺粒子/幾丁聚醣摻合………………. 74
4.3.1.3 聚苯胺粒子/幾丁聚醣摻合…………………………. 74
4.3.1.4 聚苯胺粒子/磺酸化幾丁聚醣摻合…………………. 74
4.4 第四部份 幾丁聚醣奈米複合材料之分析……………………….. 76
4.4.1 幾丁聚醣與磺酸化幾丁聚醣氣體分離效益………………... 76
4.4.2 幾丁聚醣摻合後之薄膜導電度分析………………………... 76
4.4.3 幾丁聚醣摻合後之FTIR化學結構分析……………………. 77
4.4.4 幾丁聚醣摻合後之TGA熱性質分析………………………. 78
4.4.5 幾丁聚醣摻合後之MDSC熱性質分析…………………….. 79

第五章 結論………………………………………………………………... 134
第六章 參考文獻…………………………………………………………... 92
1. R. A. Vaia and E. P. Giannelis, “Lattice Model of Polymer Melt Intercalation in Organically-Modified Layered Silicates”, Macromolecules, 30, 7990, 1997.
2. R. A. Vaia and E. P. Giannelis, “Polymer Melt Intercalation on Organically- Modified Layered Silicates: Model Predictions and Experiment”, Macromolecules, 30, 8000 1997.
3. K. G. Yokoshu, Polym. Preprints (Japan), 45, 750 , 1996
4. E. P. Giannelis, Mater. and Design, 13, 100 , 1992.
5. R. A. Vaia and E. P. Giannelis, Macromolecules, Chem. Mater., 5, 1694, 1993.
6. S. Wong, R. A. Vaia and E. P. Giannelis, “Dynamics in a Confined Polymer Electrolyte: A 7Li and 2H NMR Study”, J. Am. Chem. Soc., 117, 7568 ,1995.
7. T. J. Pinnavaia, “Intercalated Clay Catalysts”, Science, 220, 365 ,1983.
8. D. R. Paul and S. Newman, Vol. I and II, Academic Press, New York , 1978.
9. O. Olablisi, L. M. Robeson and M. T. Shaw, “Polymer-polymer Miscibility”, Academic Press., London ,1979.
10. D. R. Paul and J. W. Barlow, J. Member. Sci., Rev. Membr. Chem., C18, 109 ,1980.
11. 郭文法,工業材料,125期,129頁,1997
12. K. Yano, A. Usuki, A. Okada, T. Kurauchi and O. Kamigaito, “Synthesis and Properties of Polyimide-Clay Hybrid”, J. Polym. Sci.: part A: Polym. Chem., 31, 2493 ,1993.
13. P. B. Messersmith and E. P. Giannelis, “Synthesis and Barrier Properties of Poly(ε-Caprolactone)-Layered Silicate Nanocomposites”, J. Polym. Sci., Part A, Polym. Chem., 33, 1047, 1995.
14. I. Fortelnỳ, A. Živný, J. Jůza, “Coarsening of the Phase Structure in Immiscible Polymer Blends. Coalescence or Ostwald Ripening”, J. Polym. Sci., Part B, Polym. Phys., 37, 181 ,1999.
15. C. Joy, J. C. Schrotter and J. Sanchez, “Sol-gel Polyimide-Silica Composite Membrane: Gas Transport Properties”, J. Membr. Sci., 130, 63 ,1997.
16. Cheyssac, P.; Koofman, R.; Mattei, G; Merli, P.G.; Migliori, A. ; Stella, A. Superlattices and Microstructures,17,47,1995.
17. Lai, S.L. Phys. Rev. Lett.,77,99 , 1996.
18.Bertsh, G. Science, 277,1619, 1997.
19.Harada, M.;Yamazaki, Y.; Asakura, K.; Toshima, N. J. Phys. Chem, 96,9927,1992.
20.Lai, X.;Goodman, D. W. ; Valden, M. Science,281,1647 ,1998.
21.Abellan, J.; Arenas, A.; Chico, R.; Reyes, F. Surface Science,100,8053,1997.
22.Ahmadi, T. S.; Logunov, S. L.; El-Sayed, M. A. J. Phys. Chem.,100,8053,1996.
23.Logunov, S. L.; Ahmadi, T. S.; Khoury, J.T.; Whetten, R. L.; El-Sayed, M. A. J. Phys. Chem.,101,3713,1997
24.Chang, S. S.; Shih, C.W.; Chen, C. D.; Lai, W. C.; Wang, C. R. C. Langmuir,15,701, 1999.
25.Van der Zande, B.M.I. ; Bohmer, M.R.; Fokkink, L.G.. J.; Schonenberger, C. Langmuir,16,451, 2000.
26.Stepanyuk, V. S.; Hergert, W.;Rennert, P.;Wilderger, K.;Zeller, R.; Dederichs, P.H Surf. Sci. 1997,377,495.
27.Grabar, K. C.; Brown, K.R.; Keating, C. D.; Stranick, S. J.; Tang, S. L.; Natan, M. J. Aanal. Chem.,69,471,1997.
28.Grabar, K. C.; Smith, P.C.; Musick, M. D.; Davis, J. A.; Walter, D. G. ; Jackson, M. A.; Guthrie, A. P.; Natan, M. J. Am. Chem. Soc,118,1148,1996.
29.Herne, T. M. ; Tarlov, M. J. J. Am. Chem. Soc., 119, 8916,1997.
30.Robert, Elghanian; Storhoff, J. J. ; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Science, 277,1078, 1997
31. George, Chumanov; Konstantin Sokolv; Gregory, B. W.; Cotton, T. M. J. Phys. Chem.,99,9496, 1995
32.Emory, S. R.; Nie, S. Anal. Chem.,69,2631, 1997
33.Marcel Mulder,”Basic Principle of Membrane Technology”, Kluwer Academic Publishers,1911.
34.P.K. Gantzel and V. Merten, Ind. Eng. Chem. Proces Des. Der.,1970.
35.郭文正、曾添文,“薄膜分離”,高立書局,1988
36.Richard W. Baker,”Future Directions Membrane Gas Separation Technology”,Ind. Eng. Chem. Res., 41,1393,2002.
37.M. G. Han, S. S. Im, “Processable Conductive Blends of Polyaniline/Polyimide”,J. Appl. Polym. Sci., 67,1863,1998.
38.E.B.Rinker, S. S. Ashour and O. C. Sandall,”Kinetics and Modilling of Caron Dioxide Absorption into Aqueous Solutions of N-methyldiethanolamine”,Chem. Eng.Sci.,50,755,1995.
39.H. Bai and A. C. Yen,”Removal of CO2 Greenhouse Gas by Ammonia Scrubing”,Ind. Eng. Chem. Res.,36,2490,1997.
40.L. S. Teo, J. F. Kuo and C. Y. Chen, “Permeation and Sorption of CO2 Through Amine-Contained Polyurethane and Poly(urea-urethane)Membranes”,J. Appl . Polym. Sci., 59 1627,1996.
41.R.L.Rowley, M. E. Adams, T. L. Marshall, J. L. Oscarson, W. V. Wilding and D. J. Anderson, “Measurement of the Absorption Rate of Carbon dioxide into Aqueous Diethanolamine”, J. Chemical and Engineering Data,43,427,1998.
42.蘇品書,超微粒子材料技術,復漢出版社,1995.
43.Peng, Z. A.; Peng, X.; J. Am. Chem. Soc.;Communication, 123,183,2001.
44.Chandy T. and Sharma C. P., “Chitosan as a biomaterial”, Biomat., Art. Cells. Art.
Org., 18, 1 ,1990,
45.Taravel M. N. and Domard A., ”Relation between the physicochemical
characteristics of collagen and its interactions with chitosan :I”, Biomaterials, 14,
930,1993
46.Chandy Thoms and Sharma Chandra P., “Prostaglandin E1-immobilized poly
(vinyl alcohol)-blended chitosan membranes:blood compatibility and permeability
properties”, J. Appl. Polym. Sci., 44, 2145 ,1992.
47.Nakatsuka Shuji and Andrady Anthony L., “Pemeability of vitamin B-12 in
chitosan membranes. Effect of blending with poly(vinyl alcohol) on permeability”,
J. Appl. Polym. Sci., 44, 17 ,1992.
48.Kim Jin Hong, Kim Ju Young, Lee Young Moo, and Kim Kea Yong, “Controlled
release of riboflavin and insulin through crosslinked poly(vinyl alcohol)/chitosan
blend membrane”, J. Appl. Polym. Sci., 44, 1823 ,1992.
49.Chang K. L. B., Tsai G., Lee J. and Fu W. R., “Heterogeneous N-deacetylation of
chitin in alkaline solution”,Car. Res., 303, 327 ,1997.
50.Knorr D. “Use of chitinous polymers in food.” Food Technol 38:85,1984
51.Filar L.J., Wirick M.G. “Bulk and solution properties of chitosan. In: Chitin and Chitosan.”, Ed. By Muzzarelli, R.A.A., and Pariser, E.R. MIT Sea Grant Program, Cambridge, Mass pp. 169-181.,1978.
52.Roberts GAF. “Structure property relationships in chitin and chitosan – The versatile environ mental friendy modern materals.” Ed. By Zakaria MB, Muda WMW, Abdulah MP. Pen erbit University Kebangas. Malaysia Bangi. pp. 75.,1995.
53 Hirano S., Noishiki Y., J. Biomed. Mater. Res., 19, 413 ,1985
54.Muzzarelli Riccardo, Biagini Graziella, Pugnaloni Armanda, Filippini Oscar,
Baldassarre Venanzio, Castaldini Carla, Rizzoli Carlo, “Reconstruction of
parodontal tissue with chitosan”, Biomaterials, 10, 598,1989.
55.Austin P. R., Brine C. J., Castle J. E. and Zikakis J. P., “Chitin:New facets of
research”, Science, 212, 749,1981.
56.Amiji Mansoor M., “Permeability and blood compatibility properties of chitosan
-poly(ethylene oxide) blend membranes for haemodialysis”, Biomaterials, 16,
593,1995.
57. Qurashi M. T., Blair H. S., Allen S. J., “Studies on modified chitosan membranes.
Ⅱ. Dialysis of low molecular weight metabolites”, J. Appl. Polym. Sci., 46,
263,1992.
58.Muzzarelli R. A. A., Bellardini G., Simonelli C. and Castaldini C. and Fratto G.,
“Osteoconduction exerted by methylpyrrolidinone chitosan used in dental
surgery”, Biomaterials, 14, 39,1993.
59.Felt O., Furrer P., Mayer J. M., Plazonner B., Buri P., and Gurny R., “Topical use
of chitosan in ophthalmology:tolerance assessment and evaluation of precorneal
retention”, International J. Pharmaceutics, 180,185,1999.
60.Ganza-Gonzalez A., Anguiano-lgea S., Otero-Espinar F. J., and Mendez J. Blanco,
“Chitosan and chondrotin microspheres for oral-administration controlled release
of metoclopramide”, European J. Pharmaceutics & Biopharmaceutics, 48, 49,1999.
61.Schipper Nicolaas G. M., Varum Kjell M., Stenberg Patric, Ocklind Goran,
Lennernas Hans and Artursson Per, “Chitosan as absorption enhancers of poorly
absorbable drugs 3: Influence of mucus on absorption enhancement”, European J.
Pharmaceutical Sciences, 8, 335,1999.
62.M. Kawase, N. Michibayashi, N. Nakashima, K. Yagi, and T. Mizoguchi,
Biological and Pharmaceutical Bulletin, 20, 708,1997.
63.Sannan T, Kurita K, Iwakura Y. “Studies on chiti. 1: Solubility change by alkaline treatment and film casting.”, Makromol Chem 179,1191,1975.
64. Sannan T, Kuritak, Iwalkura Y.” Effect of deacetylaion on solubility.”, Makromol chem. 177,3589,1976.
65.Kurita K, Kamiya M, Nishimura S. “Solubiliazation of a rigid polysaccharide: controlled partial N-acetylation of chatoyant to develp solubility.”, Carbohydr polym 16,83,1991.
66.Hirano S, Kondo Y, Fujii K. “Preparation of acetylated derivatives of modified chito-oligosaccharides by the depolymerisation of partially N-acetyl ated chatoyant with nitrous acid.”, Carbohydr Res 144,338,1985.
67.Sashiwa H, Saimoto H, Shigemase Y, Ogawa R, Tokura S. “Distribution of the acetamide group in partially deacetylated chitins.,” Carbohydr Polym 16,291, 1991.
68.Sashiwa H, Saimoto H, Shigemasa Y, Tokura S.”N-acetyl group distribution in partially deacetylaed chitins prepared under omogeneous conditions.,”Carbohydr Res 242,167,1993.
69.Otakara A.,”In The development and application of Chitin and Chitosan. Industrial Technology Association”, Tokyo. Pp.161,1987.
70.Ikeda I, Sugano M, Yoshida K, Sasaki E, Iwamoto Y, Hatano K.,”Effects of chitosan hydrolysates on lipid absorption and on serum and liver lipid concentration in rats.”J. Agric Food Chem 41,431,1993.
71. Nordtveit RJ, Varum KM, Smidsrod O.”Degradation of partially N-acetylated chitosan with hen egg white and numan lysozyme. Carbohydr Polym 29,163 ,1996.
72.Terbojevich M, Cosani A, Muzzarelli R.A.A., “Molecular parameters of chitosans depolymerized with the aid of papain”, Carbohydr Polym 29,63,1996.
73.張展榮,剪力、超音波或兩者合併作用對幾丁聚醣物化性質之影響及在水溶性幾丁聚醣製備上的應用,國立海洋大學水產食品科學研究所碩士論文,1996.
74.Rinaudo M, Dung PL, Milas M.,”A new and simple method of synthesis of carboxymethylchitosans.”, In Advancein Chitin and chatoyant. ed. By brine CJ, Sandford PA, Zikakis JP. Elsevier Sci Publishers Ltd. New York pp. 516.
75.Watanabe K, Saiki I, Matsumoto Y, Azuma I., “Antimetastatic activity of neocarzinostatin in corporated into controlled release gels of CM-chitin.”,Carbohydr Polym 17,29,1992.
76.Delben F, Muzzarelli RAA, Terbojevich M., “Themodynamic Study of the protonation and interaction with metal cations of three chitosan derivatives.” Carbohydr Polym 11,205,1989.
77.Muzzarelli RAA. Modified chitosan carrying sulfonic acid group. Carbohydr Polym 19,231,1992.
78.Muzzarelli RAA, Pierluca I., Tomasetti M., “Preparation and Characteristic properties of 5-methyl pyrrolidinone chitosan.”, Carbohydr Polym 20,99,1993.
79.Kurita K, Yoshino H, Nishimura SI, Ishii S., “Rreparation and biodegradability of chitin derivatives having mercapto gropus.”, Carbohy Polym 20,239,1993.
80.Dung PI, Mials M, Rinaudo M, Desbrieres J., “Water soluble erivatives obtained by controlled chemical modifications of chitosan.”, Carbohydr Polym 24,209,1994.
81.Lang, E. R., Kienzle-Sterzer, C. A., Rodriiquez-Sanchez, D. and Rha, C. K., Rheological behavior of a typical random coil polyelectrolyte:Chiotsan . In: Chitosan . Eds. Hirano, S. and Tokura, S. The Japhanese Society of Chitin and Chitosan. pp. 34,1982.
82.Shigemasa, Y., Saito, K., Sashiwa, H. and Saimoto, H., “Enzymatic degradation of chitins and partially deacetylated chitins.”, Int., J. Biol. Macromol. 16,43,1994.
83.Ikeda, I., Sugano, M., Yoshida, K., Sasaki, E., Iwamoto, Y. and Hatano, K., “Effect of chitosan hydrolysates on lipid absorption and on serum and liver lipid concentration in rats.”, J. Agric. Food Chem. 41, 431.
84.Hasegawa, M., Isogai, A., Onabe, F., Usuda, M. and Atalla, R. H. , “Characterization of cellulose-chitosan blend film.” , J. Appl. Polym. Sci. 45,1873,1992.
85.Carolan, C. A., Blair, H. S., Allen, S. J. and Mckay, G. “N,O-carboxymethyl
chitosan, a water soluble derivative and potential green food preservative.”, Trans
IChemE. 69,195,1991.
86.Minami, S., Suzuki, H., Okamoto, Y., Fujinaga, T. and Shigemamsa, Y., “Chitin and chitosan activate complement via the alternative pathway.,” Carbohydr. Polym., 36,151,1998.
87.Lang, G. and Clausen, T.,The use of chitosan in cosmetics. In Chitin and chitosan. Eds. Skjak-Breek, G., Anthonsen, T. and Sandford, P. Elsevier Applied Sci. Publishers, New York. Pp. 139,1989
88.Simpson, B. K., Gagne, N. and Simposon, M. V. Bioprocessing of chitin and chitosan. In Fisheries Processing : Biotechnological Applications. Ed. Martin, A.M. Chapman &Hall, London. pp.155,1994.
89.Sandford, P. A. Chitosan: Commercial uses and potential applications In Chitin and Chitosan. Eds. Skjak-Breek, G., Anthonsen, T. and Sandford, P. Elsevier Applied Sci. Publishers, New York. pp. 52,1989.
90.Delben, F. and Muzzarelli, R. A.A.,”Thermodynamic study of the interaction of N-carboxymethyl chitosan with divalent metal ions.,” Carbohydr. Polym. 11,221,1992.
91.Richardson, S.,Kolbe, ., Duncan R. , “Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA.”, Int. J. Pharm. 178,231.
92.Tokura, S., Nishi, N. and Tsutsumi, “A. Studies on chitin VIII. Some properties of water soluble chitin derivatives.”, Polym. J. 15,485,1983.
93.Delben, F. and Muzzarelli, R. A. A. ,”Thermodynamic study of the interaction of N-Carboxymethyl chatoyant with divalent metal ions”,Carbohydr. Polym.11,221,1989.
94.Uraki, Y., Fuji, T., Matsuoka, T., Miura, Y. and Tokura, S.,”Site specific binding of calcium ions to anionic chitin derivatives.,” Carboydr. Polym. 20,139,1993.
95.Knorr, D., Beaumont, M. D. and Pandya, Y.,”Potential of acid soluble and water soluble chitosans in biotechnology. In: Chitin and Chatoyant. Eds. Skjak-Break,G., Anthonsen, T. and Sandford,. Elsevier Applied Sci. Publishers, New York. pp.101,1988.
96.T. Ito, H. Shirakawa and S. Ikeda, “Simultaneous Polymerization and Formation of Polyacetylene Film on the surface of Concentrated Soluble Ziegler-Type Catalyst Solution”, J. Polym. Sci., Polym. Chem. Ed.,12,11,1974.
97.C.K.Chiang, C. R. Fincher, R.Fincher., W. Park, A. j. Heeger, H. Shirakawa, E.J. Luis, S.C. Gau and A.G. MacDiarmid, “Electrical Conductivity in Doped Polyacetylene”,Phys. Rev. Lett., 39,1098,1977.
98.D.Kumar and R.C. Sharma,”Advances in Conductive Polymers”, Eur. Polym. J., 34:8, 1053,1998.
99.柯賢達,”Studies on the Synthesis of Poly(thiophene-3-acetic acid )and Their blends”,台大化工碩士論文。
100.塑膠資訊,P.2, No.8 ,1996.
101. 柯賢達, “Studies on the Synthesis of Poly(thiophene-3-acetic acid) and Their blends”, 台大化工碩士論文
102. Y. Cao, P. Smith and A. J. Hegger, “Counter-ion Induced Processibiliy of Conducting Polyaniline”, Synthe. Met., 55, 3514 ,1993.
103. P. J. Nigrey and D. F. Macinnes, J. Electrochem. Soc., 128, 1651 ,1981.
104. W. N. Allen, P. Prant and C. A. Carosella, Synthe. Met., 1, 151 ,1978.
105. T. C. Tlarke, M. T. Krounbi and V. Y. Lee, J. Chem. Soc., 384 ,1981.
106. U. A. Sevil, O. Güven, Ö. Birer, S. Süzer, “Doping of 2-Cl-PANI/PVC films by Exposure to UV, γ-rays and e-beams”, Synthe. Met., 110, 175, 2000.
107. A. G. MacDiarmid, Arthur J. Epstein, “The Concept of Secondary Doping as Applied to Polyaniline”, Synthe. Met., 65,103,1994.
108. 塑膠資訊,P.13, No.8 ,1996.
109.A. Akelah, A. Moet, J. Appl. Polym Sci.:Appl. Polym. Sym., 55,153,1994.
110.W. J. Zhang, J. Feng, H. G. MacDiamid and A. J. Epstein, Synth. Met.,84,119,1997.
111.D. M. Mohiliner, R.N. Adams, W.J. Argersinger, J. Am. Chem. Soc.,84,3618,1962.
112.M. Breitenbach, K.H. Heckner, J. Electronal. Chem.,29,309m,1971.
113.E.M.Genies, M. Lapkowski, J. Electronal. Chem.,236,189,1987.
114.Yen Wei, Chuncai Yang, Gu Wei, Guizhen Feng, Synth. Met. ,84,289,1997.
115.李其鴻,含低溫交聯劑環氧樹酯之製備與物性之研究,國立雲林科技大學碩士論文,2003.
116.W.D.Harkins, J. Am. Chem. Soc.,69,1428,1947.
117.B. Jacobi, Angew. Chem.,64,1428,1947.
118.W. J. Priest, J. Phys. Chem.,56,1077,1952.
119.D.H. Napper and R. G. Gilber, Macromol. Chem., Macromol. Symp., 10-11, 503,1987.
120.J. Ugelstad, F.K. Hansen and S. Lange, Die Makromol. Chem.,175,507,1974.
121.J. Ugelstad, M.S.El-Aasser and J. W. Vanderhoff, Polym. Lett.,11,503,1973.
122.N. Sutterlin, H. J. Kurth and G. Markomol. Chem., 177,1549,1976.
123.F. K. Hansen and J. Ugelstad, J. Polym. Sci., Part A: Polym. Chem., 17,3047,1979.
124.Gan, L. M.:Chew, C.H.:Seow, S.H. Mater. Chem.,11,1109,1993.
125.Osterholm, J.E.:Cao, Y.:Klavetter, F: Smith, P., Polymer,35,2902,1992.
126.Kinlen, P.J.:Liu,J.:Ding, Y.:Graham, C. R.:Remsen, E. E. Macromolecules, 31, 1735 ,1998.
127.Y. Haba, E.Segal, M.Narkis, G.I.Titelman, A. Siegmann, Synthetic Metals, 106,59, 1999.
128.B. J. Kim, S. G. Oh, M. G. Han, S. S. Im, Langmuir,16,5841-5845,2000.
129.Y.B.Kim, J.K. Choi, J.A.j,J.W.Hong, Synthetic Met. ,131,79,2002.
130.Carlos Peniche, Waldo Arguelle-Monal, Natalia Davidenk, Roberto Sastre, Alberto Gallardo, Julio San Roman., Biomaterials, 20 , 1869,1999
131.Z. Osman, A.K. Arof , Electrochimica Acta 48, 993,2003.
132.Miroslav BlehA,.Galina tishchenko, Zbynek Pientka .et al., Designed Monomers and Polymers, v7, No.1-2 pp. 25,2004
133.M.L. Duaarte, M. C. Ferreira, M.R. Marvao, Joao Rocha.,Biological Macromolecules,2000
134. K. V. Harish Prashant, F. S. Kittur, R.N. Tharanthan, “Solid state structure of chitosan prepared under different N-deacetylating conditions”, Carbohydrate Polymers,50,27-33,2002
135. Robert Joel Samuels, “Solid State Characterization of the Structure of Chitosan Films”., Journal of Polymer Science:Polymer Physics Edition, vol. 19, 1081,1981
136.Yanming Dong, Yonghong Ruan, Huiwu Wang, Yaging Zhao, Danxia Bi,”Studies on Glass Transition Temperature of Chitosan with Four Techniques”, Journal of Applied Polymer Science, vol.93,1553,2004.
137.Wen-Yuan Chuang, Tai-Horng Young, Chun-Hsu Yao, Wen-Yen Chiu,”Properties of the poly(vinyl alcohol)/chatoyant blend and its effect on the culture of fibroblast in vitro”, Biomaterials,20,1479,1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔