跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 20:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張碧姿
研究生(外文):BI-ZIH CHANG
論文名稱:奈米幾丁聚醣微粒對降血脂藥物包覆與釋放研究
論文名稱(外文):Study on Chitosan Nanoparticles as Delivery System for Lovastatin
指導教授:黃振家黃振家引用關係
指導教授(外文):CHEN-CHIA HUANG
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業化學與災害防治研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:114
中文關鍵詞:幾丁聚醣奈米微粒藥物控制釋放
外文關鍵詞:ChitosanNanoparticlesControlled drug release
相關次數:
  • 被引用被引用:7
  • 點閱點閱:405
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究以幾丁聚醣與三聚磷酸鈉(TPP)經由離子凝膠法(ionic gelation process)製備奈米微粒作為降血脂藥物(lovastatin)傳遞載體。以粒徑分析儀量測粒徑及界面電位,經由zeta-potential判斷粒子在溶液中分散的穩定度。並以TEM、FTIR、TGA及MDSC進行物理性質及結構鑑定分析,於37℃時模擬人體腸道(pH7.4)、胃道(pH1.2)做體外釋放,以RP-HPLC分析lovastatin釋放量。所製備微粒之粒徑範圍介於100~1000nm間,影響粒徑大小及藥物包覆率主要因素為幾丁聚醣分子量(Mw)、幾丁聚醣濃度與初始lovastatin的濃度,幾丁聚醣分子量從30kDa增加至400kDa時,藥物(lovastatin)的包覆率明顯地隨之而增加,幾丁聚醣濃度增加時,包覆率降低,粒徑大小與包覆率無明顯關係。從FTIR、MDSC判斷藥物與微粒間僅為物理吸附。TEM顯示幾丁聚醣奈米微粒於不同分子量皆為圓球形狀,且粒徑分佈均勻。Zeta potential顯示改變不同參數之幾丁聚醣奈米微粒懸浮溶液分散性皆良好,包覆lovastatin後zeta電位降低。模擬人體腸道(pH7.4)釋放量方面,分子量從30增至400kDa時,初始累積釋放速率降低;幾丁聚醣濃度增加時,累積釋放速率增加;lovastatin的累積釋放百分比隨著lovastatin濃度增加而減少。模擬腸道中釋藥行為符合零級釋放模式和Higuchi釋放模式。
The aim of this thesis is to evaluate potential of chitosan nanoparticles as carriers for the cholesterol-lowering drug, lovastatin. Lovastatin–chitosan nanoparticles were prepared by ionotropic gelation of chitosan and tripolyphosphate pentasodium(TPP). The physicochemical properties of nanoparticles were determined by zeta potential analysis, transmission electron microscope, FTIR, MDSC and TGA. Release study was conducted by in vitro investigation to simulate intestinal fluid and gastric fluid at 37 oC. The diameter of prepared nanoparticles was controlled in the range of 100~1000nm. Factors included molecular weight, concentration of chitosan, and initial lovastatin concentration, have been examined to investigate effect on particle size and encapsulation of lovastatin. Experimental results showed that lovastatin encapsulation efficiency was enhanced obviously with increasing molecular weight of chitosan from 30 to 400kDa, but, decreasing with chitosan concentration. The particle size is independent of encapsulation efficiency. Spectrograms of FTIR and MDSC showed that lovastatin physically absorbed by chitosan matrix. TEM photographs demonstrated prepared nanoparticles were in spherical shape and narrow diameter distribution. Zeta potential displayed aqueous of chitosan nanoparticles suspension is stable by altering different parameters. Zeta potential of chitosan nanoparticles decreased after lovastatin loaded. The initial release rates in simulated intestinal fluid decreased along with larger molecular weight of chitosan from 30 to 400 kDa, however increased by increasing of initial chitosan concentration. The release profiles were fitted very well by both the zero order model and the Higuchi release model.
中文摘要 .......................................................i
英文摘要 ……………………………………………………………. ii
目錄 ………………………………………………………......... iv
表目錄 ………………………………………………………......... vii
圖目錄 ………………………………………………………......... viii
一、 前言………………………………………………………. 1
二、 文獻回顧……………………………………………......... 2
2.1 藥物控制釋放技術………………………………............. 2
2.1.1 傳統藥劑與控制釋放藥劑釋藥途徑的比較……………. 2
2.1.2 控制釋放微粒釋藥情形………………………................ 3
2.2 藥物控制釋放動力學模式………….........................6
2.2.1 一階溶出模式……………………………………………. 6
2.2.2 Higuchi間質化溶出模式………………………………... 8
2.2.3 零階溶出模式……………………………………………. 9
2.3 微粒包覆技術……………………………………………. 10
2.4 奈米藥物載體.................................. 11
2.4.1 奈米藥物載體的製造方法…………………………......... 13
2.4.2 奈米藥物載體之材料……………………………………. 14
2.5 幾丁質與幾丁聚醣………………………………………. 15
2.5.1 幾丁質……………………………………………………. 15
2.5.2 幾丁聚醣…………………………………………………. 16
2.5.3 幾丁聚醣在生物醫學材料方面的應用…………………. 18
2.5.4 安全性……………………………………………………. 18
2.6 幾丁聚醣奈米微粒載體…………………………………. 19
2.6.1 幾丁聚醣於藥學上的應用………………………………. 19
2.6.2 幾丁聚醣奈米微粒於藥學上的應用……………………. 19
2.7 降膽固醇劑………………………………………………. 22
三、 實驗材料與方法………………………………................ 25
3.1 實驗材料…………………………………….................. 25
3.1.1 傳輸載體…………………………………………............. 25
3.1.2 藥物……………………………………...................... 25
3.1.3 溶劑………………………………...........................25
3.1.4 交聯劑…………………………………...................... 25
3.2 實驗儀器………………...................................25
3.2.1 乾燥儀器………………….................................25
3.2.2 釋放裝置…………………………...........................26
3.2.3 分析儀器………………………………...................... 26
3.3 幾丁聚醣、Lovastatin熱重分析步驟……………………...... 26
3.4 Lovastatin定量分析……………………………………........ 27
3.5 幾丁聚醣奈米顆粒…………………..….................... 27
3.5.1 製備……………………...................................27
3.5.2 幾丁聚醣奈米微粒粒徑大小與界面電位量測…………........ 30
3.5.3 傅利葉轉換紅外線光譜分析……….........................30
3.5.4 調幅式微差掃描熱分析………………….................... 30
3.5.5 穿透電子顯微鏡分析……………….…………………… 30
3.5.6 體外釋放實驗……………………………………….…… 31
四、 結果與討論…………………………………………......... 32
4.1 結構鑑定分析…………………………….................... 32
4.1.1 熱重分析…………………………………………………. 32
4.1.2 Lovastatin定量分析.....................................36
4.1.3 FTIR光譜分析…………………………………………... 36
4.1.4 調幅式微差掃描熱析…………….......................... 42
4.2 不同幾丁聚醣分子量影響………………................. 48
4.2.1 穿透式電子顯微鏡………………………………………. 48
4.2.2 粒徑分佈…………………………………………………. 48
4.2.3 分子量對粒徑大小及zeta potential的影響……............ 55
4.3 粒徑大小分析……………………………………………. 55
4.4 藥物含量分析……………………………………………. 58
4.5 幾丁聚醣濃度與Lovastatin初始濃度於奈米微粒中的粒徑大小對
zeta potential的影響………………………................63
4.6 體外釋放實驗……………………………………………. 63
4.6.1 模擬胃道中(pH1.2 HCl)之體外釋放實驗……………… 63
4.6.2 模擬腸道中(pH7.4 PBS)之體外釋放實驗……………… 69
4.7 模擬腸道(pH7.4 PBS)實驗之藥物釋放動力學探討…… 70
五、 結論………………………………………………………. 96
六、 參考文獻…………………………………………………. 98
1.王雲萍、張永吉,1996,“文明產物-降血脂劑Lovastatin”,化工資訊,10卷,4期, 頁263-265。
2.林佳妏、林睿哲,2002“幾丁質與幾丁聚醣於生醫材料之應用與特性”,化工技術,10 卷,3月號,頁228-237。
3.李昂,2001,“奈米級顆粒在藥物輸遞的應用”,化工資訊,10卷,頁44-55。
4.劉正雄 譯(Shargel, L. and Yu, A. B. C. 1993. Applied Biopharmaceutics and
 Pharmacokinetics 3e),1994。應用生物藥劑學與藥物動力學。合記圖書出版社翻譯出 版。台灣台北。
5.陳美惠等,1999“幾丁聚醣的物化特性”,食品工業月刊,31卷,10期,頁1-6。
6.賴惠敏等、葉明熙,2003“多醣類生物高分子幾丁質/幾丁聚醣在生物科技的應用”,化 工科技與商情,32期,頁43-47。
7.糜福龍,1997,幾丁聚醣應用於藥物及疫曲傳輸系統之設計及研究,國立中央大學。化 學工程所博士論文。
8.唐正乾等,2003,”綜論HMG-CoA還原酶抑制劑(statins)”,內科學誌,14卷,2期。
9. Allemann E., J. C. Leroux, R. Gurnay and E. Doelker, 1993, “In vitro
 extended-release properties of drug-loaded poly(D, L lactide acid)
 nanoparticles produced by a salting-out procedure,” Pharm. Res.,vol.10,
  pp. 1732-1737 .
10.Anderson L. C., D. L. Wise and J. F. Howes, 1976, “An injectable sustained
  release fertility control system,” Contraception., vol. 13, pp. 375-384.
11.Angela M., De Campos, Sanchez Alejandro and Maria J. Alonso., 2001,
“Chitosan nanoparticles: a new vehicle for the improvement of the delivery
  of drugs to ocular surface,” Int. J. Pharm., vol. 224, pp. 159-168.
12.Banerjee T., S. Mitra, A. K.Singh, R. K. Sharma and A. Maitra,
2002, ”Preparation, characterization and biodistribution of ultrafine
chitosan nanoparticles,” Int. J. Pharm., vol. 243, pp. 93-105.
13.Barratt G. M., 2000, “Therapeutic applications of colloidal drug
carriers,”Pharmaceutical Science & Technology Today, vol. 5, pp. 163-171.
14.Baker R., 1987, Controlled Release of Biologically Active Agents, John
Wiley, New York., pp. 39-83.
15.Birnbaum T. D., J. D. Kosmala, D. B. Henthorn and L. B. Peppas, 2000,
“Controlled release of β-estradiol from PLGA microparticles: The effect of
organic phase solvent on encapsulation and release,” J. Control. Rel., vol.
65, pp. 375-387.
16.Bodmeier R., and J. W. McGinity, 1988, “Solvent selection in the
preparation of poly(D,L-lactide) microsphere prepared by the solvent
evaporation method,” Int. J. Pharm., vol. 43, pp. 179-186.
17.Brasseur F., P. Couvreur, B. Kante, L. Deckers-passau, M. Roland, C.
Deckers and P. Speiser, 1980, “Actinomycin D adsorbed on
polymethylcyanoacrylate nanoparticles: increased efficiency against an
experimental tumor,” European J. of Cancer., vol. 16, pp. 1441-1445.
18.Calvo P., J. L Vila-Jato and M. J. Alonso, 1996, “Comparative in vitro
evaluation of several colloidal systems, nanoparticles, nanocapsules and
nanoemulsions as ocular drug carriers,” J. Pharm. Sci., vol. 85, pp. 530-
536.
19.Corsini A., S. Bellosta, R. Batetta, R. Fumagalli, R. Paoletti, F. Bernini,
1999, “New insights into the pharmacodynamic and pharmacokinetic properties
of statins,” Pharmacology&Therapcutics, vol. 84, pp. 413-428.
20.Couvreur P., C. Dubernet and F. Puisieux, 1995, “Controlled drug delivery
with nanoparticles: Current possibilities and future trends,” Eur. J.
Pharm., vol. 41, pp. 2-13.
21.Couvreur P., B Kante., M. Roland, P. Guiot, P. Bauduin, 1979,
”Polycyanoacrylate nanoparticles as potential lysosomotropic
carriers:preparation, morphological and sorptive properties,” J. Pharm.
Pharmacol., vol. 31, pp. 331-332.
22.Crank J., 1956, The Mathematics of Diffusion. Oxford University Press,
London.
23.Daly M. M., D. Knor, 1988, “Chitosan-alginate complex coacervate
capsules:effect of calcium chloride, plasticizers and polyelectrolytes on
mechanical stability,” Biotechnol. Prog., vol. 4, pp. 76-81.
24.Dodane Valerie and D. vinod, 1998, “Vilivalam Pharmaceutical applications
of chitosan,” PSTT., vol. 1, pp. 246-253.
25.Donbrow M. and Y. Samuelov, 1979, “Zero order drug delivery from double-
layered porous films release rate profiles from ethylcellulose,
hydroxpropylcellulose and polyethylene glycol mixture,” J. Pharm.
Pharmacol., vol. 32, pp. 463.
26.Fernandez-Urrusuno R., P. Calvo, J. L. Remunan-Lopez and M. J. Alonso,
1999, “Enhancement of nasal absorption of insulin using chitosan
nanoparticles,” Pharm. Res., vol. 16, pp. 1576-1581.
27.Grahek R., D. Milivojevic, A. Bastarda, M. Kracun, 2001, “Chromatographic
purification of some 3-hydroxy-3-methylglutaryl coenzyme-A reductase
infibitors,” J. of Chromatography A., vol. 918, pp. 319-324.
28.Gref R., Y. Minamitake, M.T. Peracchia, V. Trubestskoy, V. Torchilin and
R. Langer, 1994, “Biodegradable long-circulating polymeric
nanospheres,” Science, vol. 263, pp. 1600-1603.
29.Higuchi T., 1963, “Mechanism of sustained-action medication:theoretical
analysis of rate of release of solid drugs dispersed in solid matrices,”
J. Pharm. Sci., vol. 52, pp. 1145-1149.
30.Hofman A., 1998, “Pharmacodynamic aspests of sustained release
preparations,” J. Microencapsulation, vol. 33, pp. 185-190.
31.Jackanicz T. M., H. A. Nash, D. L. Wise and J. B. Gergory, 1973,
“Polylactic acid as a biodegradable carrier for contraceptive steroids,”
Contraception.,vol. 8, pp. 227-234.
32.Jung T., A Breitenbach. and T. Kissel, 2000, “Sulfobutylated poly(vinyl
alcohol)–graft-poly(lactide-co-glyclide) facilitate the preparation of
small negative charged biodegradable nanospheres for protein delivery,” J.
Control. Rel., vol. 67, pp. 157-169.
33.Janes Kevin A., Marie P. Fresneau , Ana Marazuela , Angels Fabra ,
Maria Jose Alonso., 2001, “Chitosan nanoparticles and delivery systems for
doxorubicin,” J. Control. Rel., vol. 73, pp. 255-267.
34.Kincl FA. and HW. Rudel , 1971, “Sustained release hormonal preparations,”
Acta Endocrinologica Supplementum(Copenh)., vol. 151, pp. 3-30.
35.Kreuter J., 1994, Colloidal drug delivery systerms, Marcel Dekker. New York.
pp. 219-342.
36.Kriwet B., E. Walter, T. Kissel, 1998, “Synthesis of bioadhensive poly
(acrylic acid) nano- and microparticles using an inverse emulsion
polymerization method for the entrapment of hydrophilic drug candidates,”
J. Control. Rel., vol. 56, pp. 149-158.
37.Ma Z. S., H. H.Yeoh and L. Y. Lim, 2002, “Formulation pH modulate the
interaction of insulin with chitosan nanoparticles,” J. Pharm. Sci., vol.
91, pp. 1396-1404 .
38.Mi F. L., S. S. Shyu, 1999, “Chitosan –polyelectrolyte complexation for
the preparation of gel beads and controlled release of anticancer drug. I.
Effect of phosphorous polyelectrolyte complex and enzymatic hydrolysis of
polymer.”, J. of Applied Polymer Sci., vol. 74, pp. 1868-1879.
39.Nishioka Y. and H.Yoshino, 2001, “Lymphatic targeting with nanoparticle system,” Advanced Drug Delivery Review, vol. 44, pp. 55-64.
40.Niwa T., H. Takeuchi, T. Hino, N. Kunou and Y. Kawashima, 1993,
“Preparations of biodegradable nanospheres of water-soluble and insoluble
drugs with D, L- lactide/glycolide copolymer by a novel spontaneous
emulsification solvent diffusion method and the drug release behavior,” J.
Control. Rel., vol. 25, pp. 89-98.
40.Niwa T., H. Takeuchi, T. Hino, N. Kunou and Y. Kawashima, 1993,
“Preparations of biodegradable nanospheres of water-soluble and insoluble
drugs with D, L- lactide/glycolide copolymer by a novel spontaneous
emulsification solvent diffusion method and the drug release behavior,” J.
Control. Rel., vol. 25, pp. 89-98.
41.Oh J. E., Y. S. Nam, K. H. Lee and T. G. Park, 1999, “Conjugation of drug
to poly(D, L-lactic-co-glycolic acid) for controlled release from
biodegradable microspheres,” J. Control. Rel., vol. 57, pp. 269-280.
42.Quintanar G. D., Q. A. Ganem, E. Alleman, H. Fessi and E. Doelker, 1998,
“Influence of stabilizer coating layer on the purification and freeze
drying of poly(D, L- Lactide acid) nanoparticles prepared by
emulsification-diffusion technique,” J. Microencap., vol. 15, pp. 107-119.
43.Pan Y., Y. J. Li, H. Y. Zhao, J. M. Zheng, H. Xu, G. Wei, J. S. Hao and
F. D. Cui, 2002, “Bioadhesive polysaccharide in protein delivery system:
chitosan nanoparticles improve the intestinal absorption of insulin in
vivo,” Int. J. Pharm., vol. 249, pp. 139-147.
44.Pitt C. G., M. M Gratzi., A. R. Jeffcot, R. Zweidinger and A. Schindler,
1979, “Sustained release drug delivery systems Ⅱ: factors affects
release rate for poly(ε-caprolactone) and related biodegradable
polyesters,” J. Pharm. Sci., vol. 68, pp. 1534-1538.
45.Rajh. Sandra Javernik, 2003, “Comparison of CE and HPLC method for
determining lovastatin and its oxidation products after exposure to an
oxidative atmosphere,” Croat. Chem. Acta., vol. 76, pp. 263-268.
46.Roy K., H. Q. Mao, S. K. Huang and K. W. Leong, 1999, “Oral gene delivery
with chitosan-DNA nanoparticles generates immunologic protection in a
murine model of peanut allergy,” Nature Med., vol. 5, pp. 387-391.
47.Sabnis S., L.H. Block, 2000, “Chitosan as an enabling excipient for drug
delivery systems I.Molecular modifications,” J. Membrane Sci., vol. 142,
pp. 13-26.
48.Sark F. M., 1999, “A programmable drug delivery system for oral
administration,” Int. J. Pharm., vol. 184, pp. 131-139.
49.Scott D. C., and G. Hollenbeck, 1991, “Design and manufacture of a zero-
order sustained-release pellet dosage form through nonuiform drug
distribution in a diffusional matrix,” Pharm. Res., vol. 8, pp. 156-161.
50.Sharma P., P. S. H. Chawla, R. Panchagnula, 2002, “Analytical method
formonitroring concentrations of cyclosporin and lovastatin in vitro in
aneverted rat intestinal sac absorption model,” J. of Chromatography.,
vol. 768, pp. 349-359.
51.Soppimath K. S., T.M. Aminabhavi, A.R. Kulkarni, W.E. Rudzinski,
2001,“Biodegradable polymeric nanoparticles as drug delivery devices,” J.
Control. Rel., vol. 70, pp. 1-20.
52.Stenekes R. J. H., A.E. Loebis, C.M. Fernandes, D.J.A. Crommelin, W.
E. Hennick, 2000, “Controlled release of liposomes from biodegradable
dextran microspheres: A novel delivery concept,” Pharm. Res., vol.17, pp.
690-695.
53.Stithit S., W. Chen and J. C. Price, 1998, “Development and
characterization of buoyant theophyline microspheres with near zero order
release kinetics,” J. Microencapsulation, vol. 15, pp. 725-737.
54.Savage G. V. and C. T. Rhodes, 1995, “The sustained release coating of
solid dosage forms: a history review,” Drug Develop Ind. Pharm., vol. 21,
pp.93-118.
55.Tai T. S., W. H. Sheu, W. J. Lee, H. T. Yao and M. T. Chiang, 2000,
“Effect of chitosan on the plasma lipoprotein concentration in subjects
having type Ⅱ diabetes with hypercholesterolemia,” Diabetes Care., vol.
23, pp. 1703-1704.
56.Tanquary A. C. and R. E.Lacey, 1974, Ed., Controlled release of biologically
active agent, Plenum Press, New York, vol.47, pp.15-71.
57.Vandenberg G. W., C. Drolet, S. L. Scott, J. D. Noue, 2001, “Factors
affecting protein release from alginate-chitosan coacervate microcapsules
during production and gastric/intestinal simulation,” J. Control. Rel.,
vol. 77, pp.297-307.
58.Wehrle P., B. Magenhein and S. Benita, 1995, “The influence of process
parmeters on the PLA nanoparticle size distribution evaluated by means of
factorial design,” J. Pharm. Biopharm., vol. 41, pp. 19-26.
59.Wise D. L., T. D. Fellman, J. E. Sanderson and R. L. Wentworth, 1979,
Lactide/glycolide acid polymers in: G. Geregoriadis (Ed.). Drug Carriers
in Biology and Medicine, Academic Press. London., pp. 237-270.
60.Wu Yan, Yang Wuli, 2005, “Changchun Wang, Jianhua Hu, Shoukuan Fu.
Chitosan nanoparticles as a novel delivery system for ammonium
glycyrrhizinate,” Int. J. Pharm., vol. 295, pp. 235-245 .
61.Xu Y., and Y. Du, 2003, “Effect of molecular structure of chitosan: protein
delivery properties of chitosan nanoparticles,” Int. J. Pharm., vol. 250 ,
pp. 215-226
62.Zambaux M. F., F. Bonneaux, R. Gref, P. Maincent, E. Dellacherie,
M. J. Alonso, P. Labrude and C. Vigneron, 1998, “Influence of
experimental parameters on the characteristics of poly(lactic acid)
nanoparticles prepared by double emulsion method,” J. Control. Rel., vol.
50, pp. 31-40.
63.Zhang Hong, Oh Megan, Allen Christine, and Kumacheva Eugenia, 2004,
“Monodisperse chitosan nanoparticles for mucosal drug delivery,”
Biomacromolecules, vol. 5, pp. 2461-2468.
64.Zhou D. B., X.M. Deng, X. H. Li, 2001, “Investigation on a novel
core-coated microspheres protein delivery system,” J. Control. Rel., vol.
75,pp. 27-36.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top