(3.236.118.225) 您好!臺灣時間:2021/05/16 13:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:魏銘鋒
研究生(外文):Ming-feng Wei
論文名稱:有機/無機混成質子傳導膜之製備與分析ㄧ有機相之選擇與無機相之修飾
論文名稱(外文):Preparations and Analysis of Organic/Inorganic Phase and Modification of Inorganic Phase
指導教授:林智汶
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業化學與災害防治研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:96
中文關鍵詞:質子傳導膜有機/無機混成薄膜溶凝膠程序
外文關鍵詞:organic/inorganic nanohybridsprotonic conducting membraneshybrid membranessol-sel process
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要以不同有機相單體poly(ethylene-oxide)( PEO)、poly(propylene oxide)(PPO)、poly(tetramethylene oxide)(PTMO),藉無機相單體3-( Triethoxysilyl) propyl isocyanate)行化學鍵結封端,使之成為混成前驅物,藉由溶凝膠反應以獲得一有機/無機混成網狀結構;本研究的第一種方式係導入含有磺酸根之烷基鏈分子,如十二烷基苯磺酸(DBSA),或摻雜磷鎢酸(PWA)於網狀結構中,藉以充當質子載體,以此結構為基礎,討論有機鏈段對質子傳導膜之影響;首先,藉由紅外線光譜分析可得知混成前驅物乃以CO(NH)OC2H5之脲酯結構連結無機相與有機相。當比較不同有機鏈段時,由熱重損失可發現,PEO、PPO、PTMO的混成膜初始裂解溫度都約為300℃,但是由於PPO具有支鏈,因此其熱重損失最明顯,而PTMO因為單位重量中碳數較多,所以熱重損失最少。由動態機械分析來觀察混成膜玻璃轉化溫度(Tg)的影響,發現隨著有機鏈段碳數的增加會使得Tg往高溫位移;而由固態NMR分析一系列有機鏈段混成膜可得知,PTMO650混成膜之Tp3結構比例最高,顯示monophenyl trimethoxysilane(MPh)修飾無機相具有較完整之三維網狀結構,而三種有機單體中,因為單位重量中PEO具有較多的氧原子,因此會有較高的含水率。當比較PTMO之分子量(MW= 650、1000)效應時,PTMO650比PTMO1000有較高的Tg,推測可能由於PTMO650混成膜無機相的比例較高,因此會有較高的Tg。另由固態NMR分析發現,PTMO650具有較少之T2 + Tp1結構比例,或者也是Tg較高的原因。而由PTMO分子量不同時,由於分子量越大,其網目亦會較大,因此具有較高的飽和含水率。而經由交流阻抗分析,含有各種不同有機鏈段之混成膜皆顯示,當含水率越高,則質子導電度越大。
本研究的第二種製備混成膜的方式則是嘗試以末端為-SH或-SO3H的矽烷基單體,例如3-(trihydroxysilyl)-1- propane sulfonic acid ((THS)Pro-SO3H) 或 (3-Mercaptopropyl trimethoxysilane (MPTMS),進一步修飾無機相,以共價鍵結賦予有機/無機混成膜具備有質子載體,藉以改善之前摻雜小分子質子載體易於流失的問題。而藉由拉曼光譜可以得知,MPTMS確實藉縮合反應接在混成膜之無機相上,且以雙氧水氧化後已成功地將末端為-SH官能基氧化為-SO3H。經由熱重分析結果發現,以THS修飾之混成膜之裂解溫度約300℃,但隨THS添加量的增加會使裂解溫度隨之下降。離子交換容量實驗所獲的結果顯示,以THS修飾的混成膜,會因為-SO3H的增加,而促使膜材的膨潤性提升。混成膜導電度對飽和含水率(30℃)之關係可發現,當含水率增加則混成膜之導電度增加,其導電度約為10-3S/cm。而以THS修飾之混成膜其甲醇滲透率為3x10-6~2×10-7 cm2/sec,選擇率約為2516~5273(S×sec/cm2),只比Nafion117○R膜2426(S×sec/cm2)稍有改善,後續仍有很大的改善空間。
The purpose of this study was to prepare a novel organic /inorganic hybrid membrane by sol-gel method. Precursors for sol-gel reactions used were poly(ethylene-oxide) (PPO),poly(propylene oxide) (PEO) or poly(tetramethylene oxide) (PTMO) as organic phase, end-capped with 3-(Triethoxysilyl)propyl isocyanate) as inorganic phase. The silica phase was further modified by monophenyl trimethoxysilane (MPh) to improve the flexibility of the membranes. The first study was to add proton-carriers such as 4-Dodecylbenzenesulfonic acid (DBSA) or phosphotungstic acid (PWA) in the hybrid membranes, and to study how different length of organic chains affected the properties of proton conducting membranes. The success of synthesis of hybrid membranes was confirmed by the FT-IR analysis. When comparing with the different length of organic chains, the initial decomposition temperature (Td) of PEO, PPO and PTMO was all near 3000C. The weight loss of PPO was the highest due to its side chains. The organic chain of PTMO was longest per unit weight and this resulted in lowest weight loss among three polymers. According to the results of the dynamic mechanical analysis (DMA), we found glass transfer temperature (Tg) shifted to higher temperature with increasing the organic length of the hybrid membranes. From the solid state NMR analysis, the proportion of the T3 structure of PTMO hybrid membrane was highest. This indicated that the silicate phase of PTMO modified by the MPh had more completed three-dimension network structure of the hybrid membranes than that of PPO and PEO. The uptake water of PEO was highest among three polymers because it contained more oxide atoms. When comparing different molecular weight of PTMO (MW=650、1000), The Tg of PTMO650 was higher than that of PTMO1000. It assumed that the proportion of inorganic phase of PTMO650 was higher and this resulted in higher Tg. From the analysis of solid state NMR, PTMO650 contained fewer proportion of T2+Tp1 structure and it maybe one of the reasons for higher Tg. We also found that the uptake water increased with increasing molecular weight. According to the results of ionic conductivity, it indicated that conductivity of all polymers increased with the increase of uptake water. The second study was to prepare hybrid membrane using silane groups terminated by –SH or -SO3H monomer, such as 3-(trihydroxysilyl-)-1- propane sulfonic acid ((THS)Pro-SO3H) or (3-Mercaptopropyl trimethoxysilane (MPTMS) to modify organic phase. The organic/inorganic hybrid membranes in which contained the proton-carrier incorporated by the covalent bonds and this improved the leaching problem of small molecular proton-carrier. From the results of Raman spectrums, MPTMS was indeed incorporated with inorganic phase in the hybrid membranes by the condensation reaction, and the terminal functional group –SH was also successfully oxidized by H2O2. According to the analysis of TGA, the Td of hybrid membranes modified by THS was about 300OC, and Td decreased with increasing the content of THS. From the results of ionic exchange capacity (IEC), the inflation of hybrid membrane increased because of the increase of hydrophilic –SO3H groups. According the relation between conductivity and uptake water at 30OC, we found that conductivity raised with the increasing uptake water and conductivity was about 1×10-3 S/cm. Methanol permeability and selectivity were respectively 3×10-6~2×10-7 cm2/sec and 2516~5273 (S×sec/cm2) and this selectivity was just a little higher than that of Nafion®.
中文摘要 I
英文摘要 III
誌謝 V
目錄 VI
表目錄 VIII
圖目錄 IX


一、緒論 1
1.1 前言 1
1.2 燃料電池的歷史發展 2
1.3 燃料電池的種類 3
1.4 質子交換膜燃料電池簡介 7
1.5 直接甲醇型燃料電池簡介 7
1.6 影響甲醇燃料電池性能的因素 8
1.7 質子交換膜商品化所面臨的挑戰 9
二、文獻回顧 10
2.1溶凝膠法製備有機/無機混成電解質膜 10
2.2研究目的與動機 14
三、溶凝膠法制備有機/無機混成材料原理 18
3.1 溶凝膠法科學基礎 18
3.2 異氫酸酯基之反應動力 31
3.3 反應動力曲線的量測 35
3.4 原理 36
四、實驗方法與步驟 39
4.1 實驗藥品與處理 39
4.2 實驗儀器 41
4.3 有機/無機混成電解質薄膜之製備 42
4.3.1 修飾前驅物 42
4.3.2有機/無機電解質薄膜之製備流程 43
4.4 分析與鑑定 46
4.4.1傅利葉紅外光譜分析 46
4.4.2 含水率實驗流程 47
4.4.3 離子交換容量實驗流程 48
4.4.4 交流阻抗實驗流程 48
4.4.5 動態機械熱分析 55
4.4.6 微差掃描熱卡計 59
4.4.7 熱重量分析 59
4.4.8 拉曼光譜分析 60
4.4.9 甲醇滲透率實驗 63
4.4.10固態NMR分析 64
五、結果與討論 68
5.1前驅物紅外線光譜分析 68
5.2使用PEO、PPO、PTMO製備混成膜之分析 70
5.2.1不同有機鏈段混成膜之熱重分析 70
5.2.2不同有機鏈段混成膜之動態機械分析 70
5.2.3不同有機鏈段混成膜之固態NMR分析 71
5.2.4不同有機鏈段混成膜之含水率分析 76
5.2.5不同有機鏈段混成膜之離子交換容量分析 77
5.2.6不同有機鏈段混成膜之導電度分析 77
5.3使用不同分子量PTMO製備混成膜之分析 79
5.3.1比較不同分子量PTMO混成膜之熱重分析 79
5.3.2比較不同分子量PTMO混成膜之動態機械分析 79
5.3.3比較不同分子量PTMO混成膜之固態NMR分析 80
5.3.4比較不同分子量PTMO混成膜之含水率、IEC與導電度分析 81
5.4摻雜吸水性高分子BoltornTMH20 82
5.5以末端為-SH與-SO3H的三羥基矽烷單體修飾無機相之分析 83
5.5.1以末端為-SH與-SO3H的三羥基矽烷單體修飾無機相之紅外線與拉曼光譜分析 83
5.5.2以末端為-SH與-SO3H的三羥基矽烷單體修飾無機相之TGA分析 84
5.5.3以末端為-SH與-SO3H的三羥基矽烷單體修飾無機相之動態機械熱分析(DMA) 86
5.5.4以末端為-SH與-SO3H的三羥基矽烷單體修飾無機相之含水率分析 86
5.5.5以末端為-SH與-SO3H的三羥基矽烷單體修飾無機相之含水率分析 87
5.5.6以末端為-SH與-SO3H的三羥基矽烷單體修飾無機相之導電度分析 87
5.5.7以末端為-SH與-SO3H的三羥基矽烷單體修飾無機相之甲醇滲透 88
六、結論 90
參考文獻 91
自述 96

表 目 錄
表1.1 各種燃料電池基本特性的比較 5
表2.1 PEO/SiO2混成膜摻雜DBSA or PWA基本性質 16
表 2.2 雙醇類高分子 17
表 3.1 sol-gel process 影響反應的主要因素 22
表3.2 反應速率常數與 ( RO)4Si之烷氧基分子大小之關係 27
Table3.3 The important reaction of isocyanate group 33
表3.4 異氫酸酯基官能基於紅外光譜位置 34
表4.1 有機物官能基振動頻率及拉曼光譜和紅外光譜強度之比較 62
Table 5.1 Silicon atom coordination about SiO3-R 72
表5.2 不同有機鏈段摻雜PWA之29Si CP/ MAS NMR數據表 75
表5.3 MPh20PWA40在不同有機鏈段下其含水率、IEC、導電度値比較 77
表5.4 MPh60DBSA40摻雜不同比例BoltornTMH20之含水率與導電度 82
表5.5 PEO:MPh=1:6加入不同mole比例之THS含水率與IEC與導電度數據 87
表5.6 PEG/SiO2以不同mole比例之THS修飾後的甲醇滲透率與選擇率 89


圖 目 錄
圖1.1 簡單的燃料電池 2
圖1.2 各種燃料電池電化學反應 6
圖2.1 有機/無機複合膜之製備 11
圖2.2 PEO/SiO2、PTMO/SiO2之TGA分析圖 12
圖2.3 BoltornTMH20結構示意圖 13
圖2.4 (3-Mercaptopropyl trimethoxysilane(MPTMS)結構示意圖 14
圖2.5 3-(trihydroxysilyl)-1-propanesulfonic acid ((THS)Pro-SO3H)結構示意圖 14
圖3.1 Sol-gel processing可增強聚合物之性質 18
圖3.2 觸媒種類與含水量對溶凝膠結構之影響 24
圖3.3 觸媒種類對溶凝膠結構之影響 25
圖3.4 成膠時間與溫度之關係 25
圖3.5 成膠時間與PH值之關係 26
圖3.6 成膠時間與添加水量之關係 27
圖3.7 水與醇鹽濃度比例對溶凝膠之氧化物含量關係 28
圖3.8 醇鹽加水後所得溶膠粒子大小與氧化物含量的關係與其構造 28
圖3.9 溶凝膠於乾燥程序時造成結構產生裂痕的原因 30
圖3.10 適用於Beer’s Law時異氰酸酯基的濃度範圍 36
圖3.11 有機/無機混成之結構:(A)有機/無機之界面藉由較弱鍵結連結 (B)有機/無機之界面藉由較強鍵結連結 38
圖4.1前驅物封端反應(endcapping) 42
圖4.2反應裝置 43
圖4.3有機/無機混成膜之製備流程 44
圖4.4 以MPTMS修飾無機相之混成膜製備流程 45
圖4.5 以THS修飾無機相之混成膜製備流程 45
圖4.6分子振動之類型 46
圖4.7紅外光譜用之定量測定裝置 47
圖4.8相位角差 50
圖4.9電流流經電阻時電壓與電流之關係 51
圖4.10電流流經電感時電壓與電流之關係 51
圖4.11電流流經電容時電壓與電流之關係 52
Fig4.12 The relation between perturbation and response 52
Fig4.13 Scheme of different electronic elements and their Nyquist polts 53
Fig4.14 Scheme of equivalent circuit 54
Fig4.15 The Nyquist plots of a simple electrochemical system 54
圖4.16交流阻抗測試裝置圖 54
圖4.17黏彈性體、黏性體、彈性體於施加正旋應變之回應情形 57
圖4.18分子量大小對動態機械性質之影響 57
圖4.19分子量分佈對動態機械性質之影響 58
圖4.20 交聯度對動態機械性質之影響 58
圖4.21 二氧化碳之振動模型與拉曼、紅外線活性的比較 61
圖4.22 各種有機物官能基之基頻率的相關圖表 62
圖4.23 甲醇滲透實驗裝置 64
圖4.24原子核在磁場下之轉動及能階分裂 65
圖4.25 固態NMR與液態NMR分析譜峰差別 66
圖4.26 魔旋角示意圖 66
Fig 5.1 Infrared spectra, a: hybrid precursor ; b: poly(ethylene oxide) ;
c: 3-( Triethoxysilyl)propyl isocyanate) 68
圖5.2不同有機鏈段(PPO、PTMO、PTMO)封端前驅物紅外線光譜圖 69
圖5.3 MPh20PWA20之不同有機鏈段熱重損失分析圖 70
圖5.4 比較不同有機鏈段與不同分子量之損失正切對溫度作圖 71
圖5.5 29Si CP/ MAS NMR各種符號相對之化學構造 72
圖5.6不同有機鏈段摻雜PWA之固態NMR分析圖 74
圖5.7 不同有機鏈段摻雜PWA之固態NMR分析疊圖 75
圖5.8 the relationship between hydrophilic functional group and water 76
圖5.9 MPh20PWA20之不同分子量熱重損失分析圖 79
圖5.10 MPh20PEO80摻雜不同比例之PWA混成膜之損失正切對溫度關係圖 80
圖5.11不同分子量摻雜PWA之固態NMR分析圖 81
圖5.12 以MPTMS修飾之混成膜IR光譜圖 83
圖5.13 以MPTMS修飾之混成膜拉曼光譜圖 84
圖5.14 PEO加入不同mole比例之MPTMS之混成膜熱重分析 85
圖5.15 PEO:MPh=1:6加入不同mole比例之THS混成膜之熱重分析 85
圖5.16加入THS系列混成膜之動態機械分析 86
Fig 5.17水合離子與磺酸根之作用關係 88
圖5.18 PEG/SiO2以THS修飾之甲醇滲透濃度曲線圖 89
【1】本間 琢也 監修 / 王建義 編譯,2004,圖解燃料電池百科。
【2】Turner, Gregory,潘家寅譯,1989,太陽、光與燃料電池。
【3】張漢宜,2002,有機/無機混成質子交換膜之製備及其應用於燃料電池之特性分析,國立雲林科技大學化工所,碩士論文。
【4】 鄭耀宗,1999,"燃料電池技術進展的現況分析",節約能源論文發表會論文專輯,頁409~422。
【5】鄭煜騰、鄭耀宗、吳龍暉,1993,"燃料電池使用台灣地區生質氣體能源的潛力分析",八十二年能源經濟學術研討會論文集,頁281~301。
【6】黃鎮江編著,2003,燃料電池。
【7】S. Srinivasan, O. A.Velev, A. Parthasarathy, D. J. Manko and A. J. Appleby, J. Power Sources, 36(1991)299
【8】D. S. Watkins, K. W. Dircks and D. G. Epp, US Patent No. 4 988 583 (Jan. 29,1991)
【9】M. S. Wilson and S. Gottesfeld, J. Electrochem. Soc., 139(1992)L28.
【10】A. P. Meyer, in W. D. Jackson (ed.), Proc. 24th Intersociety Energy Conversion Engineering Conf., Vol. 3, Institute of Electric and Electronic Engineers, New York, USA, 1989, p.1619.
【11】K. Straber, Ber, Bunsenges, Phys. Chem., 94(1990)1000.
【12】M. S. Wilson and S. Gottesfeld, J. Appl. Electrochem., 22(1992)1
【13】K. Prater, J. Power Sources, 29(1990)239
【14】E. J. Taylor, E. B. Anderson and N. R. K. Vilambi, J. Electrochem. Soc., 139(1992)L45
【15】S. M. Misiaszek, Paper presented on Fuel Cell developments at Energy Partners, West Palm Beach, FL., USA, Dec. 1992
【16】Kai Sundmacher, Keith Scott , Chemical Engineering Science 54(1999) 2927
【17】H. J. Yeager, and A. Eisenberg, Perfluorinated Iomomer Membrane, ACS symposium, Ser. 180, p. 1, American Chemical Society, Washington, DC(1982).
【18】T. D. Gierke, and W. L. Hsu, Perfluorinated Iomomer Membrane, ACS symposium, Ser. 180, p. 283., American Chemical Society, Washington, DC(1982).
【19】H. G.. Van Haubold, T. Jungbluth, and P. Hiller, Electrochemica Acta, 46, 1559 (2001).
【20】J electrochem soc ,vol 136, p1594, 1989
【21】J electrochem soc ,vol 139, p2477, 1992
【22】Kiyoharu Tadanaga, Hiroshi Yoshida, Atsunori Matsuda, Tsutomu Minami, and Masahiro Tatsumisago, Chem.Mater. 2003, 15, 1910-1912.
【23】Teruaki Tezuka, Kiyoharu Tadanaga, Atsunori Matsuda, Akitoshi Hayashi, Masahiro Tataumisago, Electrochemistry Communications 7 (2005) 245-248.
【24】Meilin Lin, Siwen Li, Electrochimica Acta 48 (2003) 4271-4276.
【25】Masahiro Watanabe, Osamu Nishikawa, Toshiya Sugimoto, Kazuo Doyama, Kenji Miyatake, Hiroyuki Uchida, Electrochimica Acta 50 (2004) 667-672
【26】I. Honma, Y. Takeda, J.M. Bae, Solid State Ionics 120 (1999) 255-264
【27】I. Honma, S. Nomura, H. Nakajima, J. of Membrane Science 185 (2001) 83-94
【28】P. Staiti, Int. J. Hydrogen Energy, Vol. 22, No. 8, PP. 809-814, 1997
【29】I. Honma, S. Hirakawa, K. Yamada, J.M. Bae, Solid State Ionics 118 (1999) 29-36
【30】Itaru Honma, Hitoshi Nakajima, Shigeki Nomura, Solid State 154-155 (2002) 707-712
【31】J.-M Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa, N. Ogata, Solid State Ionic 147 (2002) 189-194.
【32】Je-Deok Kim, Itaru Honma, Electrochimica Acta 48 (2003) 3633-3638
【33】Je-Deok Kim, Itaru Honma, Journal of The Electrochemical Society, 151 (9) A1396-A1401 (2004)
【34】Masanori Yamada, Itaru Honma, Polymer 45 (2004) 8349-8354
【35】Je-Deok Kim, Itaru Honma, Electrochimica Acta 49 (2004) 3179-3183
【36】I. Honma, H. Nakalima, O. Nishikawa, T. Sugimoto, S. Nomura, J. Electrochem. Soc. 150 (2003) A616
【37】Je-Deok Kim, Itaru Honma, Electrochimica Acta 49 (2004) 3429-3433
【38】U. Lavrencic Stangar, N. Groselj, B Orel, Ph. Colomban, Chem. Mater. 12 (2000) 3745-3753
【39】U. Lavrencic Stangar, N. Groselj, B Orel, A. Schmitz, Ph. Colomban, Solid State Ionics ,145 (2001)109
【40】Jianhua Zou, Yongbin Zhao, Wenfang Shi.
【41】H. Suzuki, Y. Yoshida, M. A Mehta, M. Watanabe, and T. Fujinama, Fuel Cells 2002, 2, No. 1
【42】Osamu Nishikawa, Toshiya Sugimoto, Shigeki Nomura, Kazuo Doyama, Kenji Miyatake, Hiroyuki Uchida, Masahiro Watanabe, Electrochimica Acta 50 (2004) 667-672
【43】張寶鴻,2004,有機/無機混成質子交換膜之製備及特性分析,國立雲林科技大學化工所,碩士論文。
【44】C.Jeffrey.Brinker,’’SOL-GEL SCIENCE – The Physics and Chemistry of SOL-GEL Processing
【45】Kenneth A. Mauritz, 1998, "Organic-inorganic hybrid materials: perfluorinated ionomera as sol-gel polymerization templates for inorganic alkoxides", Materials Science and Engineering C6, pp.121 .
【46】K. Kircher , ‘’Chemical reaction in plastic processing’’ hanser publishers , 1987.
【47】G . Socrates , Infrared Characteristic Group Frequencies , Chichester ,New York ,Wiley (1980)
【48】C.B.Wang and S.L.Cooper,Macromolecules,19,714(1983)
H.Ishihara,I.Kimura,K.Saito and H.Ono,J.Macromol.Sci.Phys.,Part B,10,591(1974)
【49】H. A. Wills, J. H. Van Der Mass and R.G. J. Miller, ‘’Laboratory Methods in Vibration Speteroscopy ‘’3th ed ., John Willey and Sons, 1987
【50】Y.S.Yang and L.J.Lee, J .Appl.Polymer.Sci., 36, 1325,1988
【51】Patrick Judeinstein and Clement Sanchez, J. Mater. Chem , 1996 , 6(4) ,511-525
【52】楊智仁,2004,雜聚酸參雜聚乙烯醇質子交換模之製備及特性分析,國立雲林科技大學化工所,碩士論文。
【53】M.A.B.Christopher and A.M.O.Brett,’’Electrochemistry Principles ,Methods, And Application , “Ch 11,pp229~234,Oxford New York,NY,1993
【54】謝國煌、陳原振、曾勝茂,1997,"動態機械分析儀之應用分析",科儀新知,第十八卷四期,頁 32
【55】李宜穎,2002,金屬氧化物之硫化反應於雷射拉曼光譜的研究,中國文化大學應用化學研究所,碩士論文。
【56】汪建民、施正雄、黃文彰,材料分析, 第十九章,頁521,民國87年,民全書局
【57】A.Lee Smith,’’The Analytical Chemistry of Silicones’’ , Analytical Research Department Dow Corning Corp. Midland , Michigan, Ch12,P347
【58】D. Bormann, S. Tilloy, E. Monflier, Vibrational Spectroscopy 20 (1999) 165-172
【59】H. G. M. Edwards, D. R. Brown, J. A. Dale, S. Plant, Vibrational Spectroscopy 24 (2000) 213-224
【60】柯以侃 主編,吳明珠 校訂,儀器分析,第七章,頁 253,民國86年,文京圖書有限公司
【61】胡德,高分子物理與機械性質(上),第二章,頁38,2001,國立編譯館
【62】Gab-Jin Hwang Journal of membrane science 156,1999,61-65
【63】Leslie Jones , Journal of membrane science,162 ,1999 ,135-143
【64】Yashitsugu Sone, Per Ekdunge, and Daniel Simonsson, 1996, J.Electrochem. Soc., Vol 143, No 4,April., pp.1254 .
【65】Y.Sone , P.Ekdunge , and D.Simonsson , J.Electrochem.Soc 143 p1254-1259 1996
【66】M.Watanabe , K.Sakairi , and M.Inoue , J.Electroanal.Chem,375 p415-418 1994
【67】S. M. Misiaszek, Paper presented on Fuel Cell developments at Energy Partners, West Palm Beach, FL., USA, Dec. 1992
【68】S. Quezado, J. C. T. Kwak , and M. Falk, Can. J. Chem. , 62 (958-966)1984
【69】Yoshihiro Shigemasa, Internatinal Journal of Biological Macromolecules, 18.(1996),237~242
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top