(3.236.231.61) 您好!臺灣時間:2021/05/11 22:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:范信淳
研究生(外文):Xian-chan Fan
論文名稱:PCP共聚物的研究探討:特性分析及藥物傳遞之運用
論文名稱(外文):Characterizations of Poly (caprolactone) - b- Chitooligosaccharide - b - Poly (ethylene glycol) copolymers and micelles for drug delivery
指導教授:鍾次文
指導教授(外文):Tze-Wen Chung
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業化學與災害防治研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:105
中文關鍵詞:微胞幾丁寡醣己內脂聚乙二醇標的化藥物釋放
外文關鍵詞:micellespoly (ethylene glycol)poly ( -caprolactone)chitooligosaccharidedrug deliverytargetingDOX delivery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要探討,以化學改質的幾丁寡醣為起始材料,將聚合之單甲基聚己內酯(m-PCL)與甲氧基聚乙二醇(m-PEG)分子鏈分別與幾丁寡醣之羥基反應接枝(Graft),而形成聚己內酯-幾丁寡醣-聚乙二醇(PCL-g-COS-g-PEG, PCP) 接枝共聚合物,利用直接形成法(Direct dissolution method)製備成為PCP微胞(Micelle)。以不同處理方法對粒子表面進行修飾,並探討其對奈米粒子特性與對細胞標的化能力及藥物釋放之影響。
結果顯示,本研究製備之PCP聚合物形成微胞之臨界膠體濃度(Critical Micelle Concentration, CMC)為0.0107 wt % ( ~ 1.0 μ M)。微胞之尺寸分佈約為40 - 120 nm。表面電位值會隨著PH值而改變,於PH7.4~PH3.0,測量結果為-3.23±1.26∼13.87±4.41mv。另外,由於PCP結構中含有COS,利用COS上含有的胺基,對此一特性對微胞加以應用研究。其一:於微胞形成後利用自由胺基做化學交聯(Cross-link)探討微胞包覆Doxorubicin(DOX)於不同PH值做藥物釋放測試;其二:在自由胺基上接枝具貼附細胞之因子– (Arg-Gly-Asp, RGD),作細胞uptake之試驗。其結果顯示:1.透過化學交聯後所形成之交聯PCP微胞,在PH7.4、37℃條件下結果顯示交聯較未交聯之微胞於24小時內有有抑制突釋現象,從37.6 % 降至22.0 %,並且有效延緩釋放從96小時(73.4 %) 至192小時(69.4 %);而於PH5.0時仍可延緩釋放至96小時(70.8%)。2.將鍵結上RGD之RGD-PCP微胞利用PC-12細胞作uptake試驗,結果發現有鍵結上RGD之微胞明顯的比一般的PCP微胞被PC-12細胞uptake為快。在本研究中所發展的PCP微胞結構中,保留許多的自由胺基,此官能基可以提供了許多不同的功能需求,而此形式微胞於藥物釋放系統中將有助於藥物傳遞的穩定性以及藥物之標地(Target)功能。
A new tri-block amine-group containing copolymer and micelle consisting of poly (��-caprolactone) - b - chitooligosaccharide - b – poly (ethylene glycol) (PCL-b-COS-b-PEG, PCP), was synthesized and characterized for applications of drug delivery. The characteristics of the PCP copolymer were investigated by Fourier-transform infrared spectrometry (FT-IR) to examine the containing amine and ester groups of COS and PCL of the copolymer, respectively, 1H nuclear magnetic resonance (1H NMR) to investigate the structure of PCP copolymer (e.g., PCL and PEG blocks grafted onto COS block), and gel permeation chromatography (GPC) to determine number average molecular weight of the block copolymer (Mn), 11340 Da/mole. The PCP copolymer can self-assemble to form micelles at the critical micelle concentration (CMC) of 0.0107 wt % (or ~ 1.0 μ M) determined by the UV-VIS absorption spectra. The mean diameter of the PCP micelles is 90 nm, as measured by a dynamic light-scattering (DLS) analyzer. Since the PCP micelles containing amine groups, the copolymer grafted with Arg-Gly-Asp (RGD) tri-peptide to form a RGD-PCP copolymer and then characterizes the micelle behaviors of the copolymer. The PCP-RGD micelles are uptake by PC-12 cells much faster than PCL-g-PEG and PCP ones. Moreover, the stability and release the release of doxorubicin from PCP micelles with genipin crosslinked is sustained(e.g., 8 days) longer than the micelles without crosslinked(e.g., 4 days) and micelles reported by other investigators. In conclusion, a new tri-block amine group containing PCP copolymer is synthesized that can self-assemble to form micelles which might be suitable for applications in drug delivery.
目錄
§第一章 緒論
§1-1材料簡介:…………………………………………………………………… 1
§1-1-1聚己內酯(Poly ε-carprolactone, PCL)………………………………………1
§1-1-2-1幾丁寡醣(chitosan-oligosaccharide) …………………………………………2
§1-1-2-2 幾丁物質於生物醫學上之應用…………………………4
§1-2-1藥物控制釋放傳遞系統………………………………………………………5
§1-2-2.奈米粒子的表面改質…………………………………………………………6
§1-3-1 聚合物微胞……………………………………………………………………9
§1-3-2 微胞的結構與型態………………………………………………………… 10
§1-3-3 微胞於醫學上之應用………………………………………………………12
§1-4精胺酸-甘胺酸-天門冬胺酸(RGD)……………………………………………14
§1-5奈米粒子搭載抗癌藥DOX之應用……………………………………………15
§1-6天然交聯劑-綠梔子素(genipin)…………………………………………………17
§2-1研究動機與實驗目的………………………………………………………… 18
§第二章實驗設備與方法
§2-1實驗藥品………………………………………………………………………19
§2-2 實驗儀器………………………………………………………………………22
§2-3 實驗整體流程…………………………………………………………………24
§2-4實驗方法和步驟………………………………………………………………25
§2-4-1 PCP共聚物材料合成………………………………………………………26
§2-4-1-1幾丁寡醣之改質(Pth-COS)…………………………………………………27
§2-4-2-1單甲基聚己內酯之聚合 …………………………………………………28
§2-4-2-2 m-PCL-NCO預聚合………………………………………28
§2-4-3 m-PEG-NCO預聚合………………………………………28
§2-4-4 PCL-g-Pth-COS-g-PEG接枝聚合…………………………30
§2-4-5 N-Phthaloylation還原…………………………………………….…………32
§2-4-6 PCP純化………………………………………………… 33
§2-5 PCP 材料性質分析
§2-5-1 核磁共振光譜 …………………………………………33
§2-5-2-1紅外線光譜………………………………………………………………34
§2-5-3-1凝膠滲透層析…………………………………………35
§2-6 微胞之製備與分析………………………………………………………….37
§2-6-1 PCP聚合物微胞製備……………………………………37
§2-6-2 臨界微胞濃度分析………………………………………37
§2-6-3 PCP聚合物微胞粒徑分析…………………………………………………38
§2-6-3-1 雷射粒徑分析儀…………………………………………………………38
§2-6-4 聚合物微胞表面電位量測…………………………………………………39

§2-6-5 TEM拍攝聚合物微胞………………………………………………………40
§2-7 PCP微胞之化學交聯………………………………………42
§2-7-1 以未交聯及交聯PCP微胞包覆DOX於不同PH值下作體外釋放……42
§2-7-2生醫工程之應用--- PC-12細胞標的化測定………………………………44
§2-7-2-1製備RGD-PCP micelles…………………………………………………44
§2-7-2-2微胞於PC-12細胞標的化測定…………………………………………46
§第三章 結果與討論
§3-1-1 PCP共聚物官能基鑑定……………………………………………………48
§3-1-1-2 以磁共振光譜儀分析……………………………………………………50
§3-1-1-2 以凝膠滲透層析分析分子量……………………………………………56
§3-2-1 臨界膠體濃度(CMC)分析…………………………………………………57
§3-2-2 以雷射粒徑儀量測其平均粒徑…………………………………………….59
§3-2-3表面電位 (zeta potential)分析………………………………………………59
§3-3 PCP微胞之化學交聯…………………………………………………………62
§3-3-2 RGD-PCP微胞細胞uptake試驗……………………………………………66
§3-3-2-1以及HPLC測試接枝率……………………………………………………66
§3-3-2-2以及FTIR對官能基作鑑定…………………………………………………66
§3-3-2-3 RGD-PCP微胞細胞uptake實驗……………………………………………67
















表索引
表3-1-1-2-1 COS Proton………………………………………………51
表3-1-1-2-2 PCP Proton……………………………………………….53
表3-1-1-2 Pth-COS、COS-PCL。PCP 分子量………………………56













圖索引

圖1-1-1 PCL/PEO/PCL之奈米微胞結構示意圖……………………………………2
圖1-1-2 CS coating PCL奈米粒子對epithelium貼附之細胞螢光圖…………………2
圖1-1-3(a) 幾丁質……………………………………………………………………3
圖1-1-3(b) 幾丁聚醣…………………………………………………………………3
圖1-2-1血小板與內皮細胞中常見之接受器(receptor)示意圖………………………8
圖1-3-1聚合物微胞示意圖…………………………………………………………10
圖1-3-2不同溶液系統中微胞之結構………………………………………………11
圖1-3-3EPR效應示意圖……………………………………………………………13
圖1-4 RGD tri-peptide amino acid sequences…………………………………………14
圖1-5-1 doxorubicin結構式…………………………………………………………15
圖1-5-2 DOX在體內不同部位,時間對濃度的分佈圖……………………………16
圖1-6 Genipin的分子結構式………………………………………………………18
圖2-4-1-1 m-PCL-NCO之反應式…………………………………………………27
圖2-4-2-2 m-PCL-NCO之反應式…………………………………………………29
圖2-4-2-3PEG-NCO之反應式…………………………………………………… 29
圖2-4-4-2PEG-Pth-COS-PCL之反應式………………………………………….……31
圖2-4-5 N-Phthaloylation幾丁寡醣之還原反應…………………………………….32
圖2-5-3-1 多孔性凝膠粒子層析管柱的分離效果…………………………………36
圖2-6-5 負染色原理說明圖…………………………………………………………40
圖2-7-1為包覆DOX微胞交聯示意圖………………………………………………44
圖2-7-2 RGD-PCPmicelles反應示意圖………………………………………………45
圖3-1-1-1以2 cm-1解析度掃描16次之ATR-FTIR分析圖………………………49
圖3-1-1-2-1COS之13C-1H NMR圖譜…………………………………………… 51
圖3-1-1-2-2 PCP之13C-1H NMR圖譜…………………………………………… 52
圖3-1-1-2-3 COS 1H NMR圖譜………………………………………………… 54
圖3-1-1-2-4 PCP 1H NMR圖譜……………………………………………………55
圖3-2-1-1不同濃度PCP聚合物加入DPH 水溶液之UV-VIS圖譜……………57
圖3-2-1-2合物CMC值量測圖……………………………………………………58
圖3-2-2 -1P micelles粒徑分佈圖PDI=0.35)………………………………………59
圖3-2-2-2下微胞之表面電位 (n=3)………………………………………………60
圖3-2-2-310倍CMC值濃度形成微胞TEM圖(X120K)…………………………62
圖3-3-1以genipin交聯及未交聯PCP微胞包覆DOX………………………… 64
圖3-3-1-2PH7.4、5.0、4.0、3.0下包含DOX之未交聯之PCP micelles累積釋圖…65
圖3-3-1-3 PH7.4、5.0、4.0、3.0下包含DOX之genipin交聯之PCP micelles累積釋放圖………………………………………………………………………………… 66.
圖3-3-2-2PCP與RGD-PCP copolymer FTIR分析圖……………………………… 67
圖3-3-2-3 PC-12細胞. Uptake of RGD-PCP micelles…………………………………68
圖3-3-2-4 PC-12細胞uptake RGD-PCP螢光微胞之螢光強度變化………………69
[1] D.H. Lewis, Controlled Release of Bioactive Agents from Lactide / Glycolide polymers. In: M. Chain., R. Langer, Biodegradable polymers as Drug Delivery Systems, Marcol Dekker, Inc., New York, 1990, 1-45
[2] A. M. DeCampos , A. Sanchez , R. Gref , P. Calvo , M. J. Alonso. The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. European Journal of Pharmaceutical Sciences 20: 73–81 2003.
[3] L. Zhanga, Y. Hu, X. Jiang, C. Yang, W. Lu, Y. H. Yang, Camptothecin derivative-loaded poly(caprolactone -co-lactide)-b -PEG-b-poly(capro- lactone-co-lactide) nanoparticles and their biodistribution in mice, Journal of controlled release, 96, 135-148, 2004.
[4].Kurita, K.; Chemistry and application of chitin and chitosan, Polymer Degradation and Stability, 59, 1998, 117-120.
[5].Rachel, C. K.; Ilan C.; The molecular biology of chitin digestion, Current Opinion in Biotechnology, 9, 1998, 270-277.
[6] L. Illum, Chitosan and its use as a pharmaceutical excipient, Pharm. Res., 15 (9), 1326-1331, 1998
[7].Majeti N.V.; Kumar, R.; A review of chitin and chitosan applications, Reactive & Functional Polymers, 46, 2000, 1–27.
[8].Rhoades, J. and Roller, S.; Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Applied Environmental Microbiology, 2000, 66, 80-86.
[9].Kuen, Y. L.; Wan, S. H.; Won, H. P.; Blood compatibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials, 2001, 22, 261-268.
[10].Miyazaki, S.; Ishii, K.; Nadai, T.; The use of chitin and chitosan as drug carriers. Chem. Pharm. Bull, 1981, 29, 3067-3069.
[11].Aiedeh, K.; Gianasi, E.; Orienti, I.; Zecchi, V.; Chitosan microcapsules as controlled release system for insulin. J. Microencapsul, 1997, 14, 567-576.
[12].Giunchedi, P.; Genta, I.; Conti, B..; Muzzarelli, R. AA.; Conte, U.; Preparation and characterization of ampicillin loaded methylpyrrolidinone chitosan and chitosan microspheres. Biomaterials 1989, 19, 157-161.
[13] K. A. Janes, M. P. Fresneau, A. MaraZuela, A. Fabra, M. J. Alonso, Chitosan nanoparticle as delivery system for Doxorubicin, Journal of controlled release, 73, 255-267,2001
[14].S. H. Chiou.; W. T. Wu.; Y. Y. Huang.; T. W. Chung.; effects of the characteristics of chitosan on controlling drug release of chitosan coated PLLA microspheres, J. Mocroencapsul. 2001,18, 613-625.
[15] M. N. V. Ravi Kumar, U. Bakowsky, C. M. Lehr, Preparation and characterization of cationic PLGA nanospheres as DNA carriers, Biomaterials, 25, 1771-1777, 2004
[16] J. Panyam, V. Lathasetwar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue.,Advanced Drug Delivery Reviews,55,329-347, 2003
[17] J.G. Shiah, M. Dvorak, P. Kopecekova, Y. Sun, C.M. Peterson, J. Kopecek, Biodistribution and antitumour efficacy of long-circulation N-(2-hydorxypropyl)methacrylamide co- polymer-doxorubicin conjugates in nude mice, Eur. J. Cancer 37:131-139,2001
[18] S. M. Moghimi, A. C. Hunter, J. C. Murry, Long-circnlating and target specific nanoparticles: theory to practice, Pharmacol. Rev. 53(2), 283-318, 2001
[19] C. Rouzes, R. Gref, MLeonard, A. De Sousa Delgado, E. Dellacheride, Surface modification of poly(lactic acid) nanospheres using hydophobically modified dextrans as stabilizers in an o/w emulsion/evaporation technique, J.
Biomed. Mater. Res. 50:557-565 2000.
[20] R. Gref, M. Luck, P. Quellec, M. Marchand, E. Dellacherie, S. Harnisch, T. Blunk, R.H. Muller, Stealth corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption, Colloids and Surfaces B: Biointerfaces, 18, 301–313, 2000
[21] A. Vila, A. Sanchez, M. Tobio, P. Calvo, M.J. Alonso, Design
of biodegradable particle for protein delivery, Journal of controlled release, 78: 15-24, 2002
[22] S. Faraasen, J. Voros, G. Csucs, M. Textor, H. P. Merkle, and E. Walter, Ligand –Specific Targeting of Microspheres to Phagocytes by Surface Modification with Poly(L-Lysine)-Grafted Ply(Ethylene Glycol) Conjugate, Pharmaceutical Research, Vol. 20, 2, 237-246, 2003
[23] J. Panyam, V. Lathasetwar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue.,Advanced Drug Delivery Reviews,55,329-347, 2003
[24]Lemarchand, Caroline, Gref, Ruxandra, Couvreur, Patrick. Polysaccharide-decorated nanoparticles, European Journal of Pharmaceutics and Biopharmaceutics,58.327-341. 2004
[25].Lavasanifar, A.; Samuel, J.; Kwon, G. S.; Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery, Advanced Drug Delivery Reviews, 54, 2002, 169-190.
[26].Wang, Z. I.; Liu, Y.; Zhang, Z.; “Handbook of Nanophase and Nanostructured Materials Volume I:Synthesis”, Kluwer Academic/Plenum Publishers, 2002, 1-3.
[27].Yoo, H. S.; Lee, E. A.; Park, T. G.; Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages, Journal of Controlled Release, 82, 2002, 17-27.
[28].Pierschbacher M. D.; and Ruoslahti, E.; Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule., Nature, 309, 1984, 30-33.
[29].Anselme, K.; Osteoblast adhesion on biomaterials., Biomaterials, 21, 2000, 667-681.
[30].Chen, X.; Park, R.; Shahinian, A. H.; Bading, J. R.; Conti, P. S.; Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation, Nuclear Medicine and Biology 31 ,2004, 11-19.
[31].Chen, X.; Park, R.; Shahinian, A. H.; Tohme, M.; Khankaldyyan, V.; Bozorgzadeh, M. H.; Bading, J. R.; Moats, R.; Laug, W. E.; Conti, P. S.; 18F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis, Nuclear Medicine and Biology 31, 2004, 179-189.
[32].Laboratory Investigation Vol 81, No.4, 439~452 (2001)
[33]J. M. Saul , A. Annapragada , J. V. Natarajan ,a , R. V. Bellamkonda. C ontrolled targeting of liposomal doxorubicin via the folate receptor in vitro . Journal of Controlled Release 92:49–67 ,2003.
[34]H. S. Yoo, T. G. Park. Folate receptor targeted bio- degradable polymeric doxorubicin micelles. Journal of Controlled Release 96:273–283,2004.
[35] G. Fontana, M. Licciardi, S. Mansueto, D. Schillaci, G. Giammona, Amoxicillin-loaded polyethylcyano -acrylate nanoparticles: Influence of PEG coating on the particle size, drug release rate and phagocytic uptake. Biomaterials, 22, 2857-2865, 2001
[36] A. Bigi, G. Cojazzi, S. Panzavolta, K. Rubini. Stabilization of gelatin films by crosslinking with genipin. Biomaterials, 23, 4827-4832, 2002.
[37] H.W. Sung, R.N. Huang, L.L.H. Huang, C.C. Tsai, C.T. Chiu. Feasibility study of a natural crosslinking reagent for biological tissue fixation. J. Biomed. Mater. Res., 42, 560-567, 1998.
[38] H.W. Sung, D.M. Huang, W.H. Chang, R.N. Huang, J.C. Hsu. Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: In vitro study. J. Biomed. Mater.Res., 46, 520-530, 1999.
[39].Mi, F. L.; Tan, Y. C.; Liang, H. F.; Sung, H. W.; In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant, Biomaterials, 23, 2002, 181-191.
[40].Mi, F. L.; Sung, H. W.; Shyu, S. S.; Su, C. C.; Peng, C. K.; Synthesis and characterization of biodegradable TPP/genipin cocrosslinked chitosan gel beads, Polymer, 44, 2003, 6521-6530.
[41].Kurita, K.; Tomita, J.; Tada, T.; Nishimura, S. L.; lshii, S.; Reactivity characteristics of a new form of chitosan, Polymer Bulletin, 30, 1993, 429-433.
[42].Jin, K. K.; Park, D. J.; Lee, M.S.; Kyo, J. I. Synthesis and crystallization benavior of Poly(L-lactide)-block-Poly(ε-caprolactone) copolymer, Polymer, 42, 2001, 7429-7441.
[43].Brown, W. H. H.; Benson, D. R.; Iverson, B.; Iverson, S.; Introduction to Organic Chemistry, 2nd Edition, Harcourt College Publishers, 1999.
[44].Pavia, D. L.; Lampman, g. M.; Kriz, G. S.; Introduction to Spectroscopy, Saunders College Publishing, 1996.
[45].Skoog D. A.; and Leary, J. J.; Principles of Instrumental Analysis" 4th Edition, Saunders College Publishing, New York, 1992.
[46].Christine, A.; Dusica M.; Adi, E.; Nano-engineering block copolymer aggregates for drug delivery, Colloids and Surfaces B: Biointerfaces, 16, 1999, 3-27.
[47].Jeong, B.; Kibbey, M. R.; Birnbaum, J. C.; Won, Y. Y.; Gutowska, A.; Thermogelling Biodegradable Polymers with Hydrophilic Backbones:PEG-g-PLGA, Macromolecules, 33, 2000, 8317-8322.
[48].Jeong, B.; Kibbey, M. R.; Birnbaum, J. C.; Won, Y. Y.; Gutowska, A.; Thermogelling Biodegradable Polymers with Hydrophilic Backbones:PEG-g-PLGA, Macromolecules, 33, 2000, 8317-8322.
[49].Taillefef, J.; Jones, M.C.; Nrasseur, N.; Van lier, J.E.; Leroux, J.C.; Preparation and characterization of PH-responsive polymer micelles for the delivery of photosensitizing anticancer drugs, Journal of pharmaceutical sciences, 89, 2000, 52-62.
[50]Mi, F. L., Tan, Y. C., Liang, H. F., & Sung, H. W. (2002). In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials, 23, 181-191.
[51]Mi, F. L., Sung, H. W., Shyu, S. S., Su, C. C., & Peng, C. K. (2003). Synthesis and characterization of biodegradable TPP/genepin co-crosslinked chitosan gel beads. Polymer, 44, 6521 - 6530.
[52]Ouchi, T., Miyazaki, H., Arimura, H., Tasaka, F., Hamada, A., & Ohya, Y. (2002). Formation of polymeric micelles with amino surfaces from amphiphilic AB-type diblock copolymers composed of poly(glycolic acid lysine) segments and polylactide segments. J. polym. sci. A Polym. Chem., 40, 1426 - 1432.
[52]Wong, H. L., Bendayan, R., Rauth, A. M., & Wu, X. Y. (2004). Development of Solid Lipid Nanoparticles Containing Ionically Complexed Chemotherapeutic Drugs and Chemosensitizers. J. pharm. Sci., 93, 1993 - 2008
[53]Shuai, X., Ai, H., Nasongkla, N., Kim, S., & Gao, J. (2004). Micellar carriers based on block copolymers of poly (ε-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J. Control. Release, 98, 415 - 426.
[54] T. –W. Chunga, Y. –F. Luc, S. –S. Wangc, Y. –S. Lin, S. –H. Chuc, Growth of human endothelial cells on photochemically grafted Gly–Arg–Gly–Asp (GRGD) chitosans, Biomaterials, 23, 4803-4809, 2002
[55] T.W. Chung, Y.F. Lu, S.S. Wang, S.H. Chu, “Growth of human endothelial cells on photochemically grafted Gly-Arg-Gly-Asp (GRGD) on chitosans”, (Biomaterials, 2002, Vol. 23, 4803-4809)
[56].Kurita, K.; Tomita, J.; Tada, T.; Nishimura, S. I.; lshii, S.; Reactivity characteristics of a new form of chitosan, Polymer Bulletin, 30, 1993, 429-433.
[57].Harish Prashanth, K. V.; Kittur, F. S.; Tharanathan, R. N, Solid state structure of chitosan prepared under different N-deacetylating conditions, Carbohydrate Polymers, 50, 2002, 27-33.
[58].Brugnerotto, J.; Lizardi, J.; Goycoole, F. M.; Arguelles-Monal, W.; Desbrie¡res, J.; Rinaudo, M.; An infrared investigation in relation with chitin and chitosan characterization, Polymer , 42, 2001, 3569-3580.
[59].Can, Z.; Qineng, P.; Hongjuan, Z.; Jian, S.; Preparation of N-alkyl-O-sulfate chitosan derivatives and micellar solubilization of taxol, 54, 2003, 137-141.
[60].Felgner, P. L.; and Ringold, G. M.; Cationic liposome-mediated transfection. Nature, 1989, 337, 387-388.
[61].Kurita, K.; Tomita, J.; Tada, T.; Nishimura, S. I.; lshii, S.; Reactivity characteristics of a new form of chitosan, Polymer Bulletin, 30, 1993, 429-433.
[62].Ken, T.; Hiroshi, O.; Mayumi, O. K.; Kiyoshi, H.; Yutaka, M.; Deacetylation of chitin oligosaccharides of dp 2-4 by chitin deacetylase from Colletotrichum lindemuthianum, Carbohydrate Research, 303, 1997, 353-358.
[63].Kim, J. Y.; Lee, J. K.; Lee, T. S.; Park, W. H.; Synthesis of chitooligosaccharide derivative with quaternary ammonium group and its antimicrobial activity against Streptococcus mutans, International Journal of Biological Macromolecules, 32, 2003, 23-27.
[64].Kurita, K.; Tomita, J.; Tada, T.; Nishimura, S. L.; lshii, S.; Reactivity characteristics of a new form of chitosan, Polymer Bulletin, 30, 1993, 429-433.
[65].Jeong, B.; Bae, Y. H.; Kim, S. W.; Biodegradable thermosensitive micelles of PEG-PLGA-PEG triblock copolymers, Colloid Surface B. 1999, 16, 185-193.
[66] Jeong, B.; Kibbey, M. R.; Birnbaum, J. C.; Won, Y. Y.; Gutowska, A. Macromolecules 2000, 33, 8317-22.
[67] Savic, R.; Luo, L.; Eisenberg, A.; Maysinger, D. Science 2003, 300, 615-618.
[68] Chang, Y.; Prange, R.; Allcock, H. R.; Lee, S. C.; Kim, C. Macromolecules 2002, 35, 8556-8559.
[69] T. Govender, T. Riley, T. Ehtezazi, M. C. Garnett, S. Stolnik, L. Illum, Stanley S. Davis, Defining the drug incorporation properties of PLA–PEG nanoparticles, International journal of pharmaceutics, 199, 95-110, 2000
[70] M. N. V. Ravi Kumar, U. Bakowsky, C. M. Lehr, Preparation and characterization of cationic PLGA nanospheres as DNA carriers, Biomaterials, 25, 1771-1777, 2004
[71]Shuai, X., Ai, H., Nasongkla, N., Kim, S., & Gao, J. (2004). Micellar carriers based on block copolymers of poly (ε-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J. Control. Release, 98, 415 - 426.
[72]Yoo, H. S., & Park, T. G. (2004). Folate receptor targeted biodegradable polymeric doxorubicin micelles. J. Control. Release, 70 , 63 - 70.
[73].Torchilin, V. P., Structure and design of polymeric surfactant-based drug delivery systems, J. Controlled. Release, 73, 2001, 137-172.
[74].Anselme, K.; Osteoblast adhesion on biomaterials., Biomaterials, 21, 2000, 667-681.
[75].Jeong, B.; Bae, Y. H.; Kim, S. W.; Biodegradable thermosensitive micelles of PEG-PLGA-PEG triblock copolymers, Colloid Surface B. 1999, 16, 185-193.
[76].Park Y. J.; Lee, J. Y.; Chang, Y. S.; Jeong, J. M.; Chung, J. K.; Lee, M. C.; Park, K. B.; Lee, S. J.; Radioisotope carrying polyethylene oxide-polycaprolactone copolymer micelles for targetable bone imaging, Biomaterials 2002, 23, 873-879.
[77].Lee, S. C.; Chang, Y.; Yoon, J.-S.; Kim, C.; Kwon, I. C.; Kim, Y.-H.; Jeong, S. Y.; Synthesis and micellar characterization of amphiphilic diblock copolymers based on poly(2-oxazoline) and aliphatic polyesters, Macromolecules 1999, 32, 1847-1852.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔