(3.239.33.139) 您好!臺灣時間:2021/03/08 18:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:游宗禧
研究生(外文):Yu tsung hsi
論文名稱:利用連續式薄膜反應器回收模擬廢水中酚之研究
論文名稱(外文):Phenol Recovery From Simulated Waste WaterUsing Continuous Membrane Reactor
指導教授:吳和生吳和生引用關係
指導教授(外文):Wu Ho Shing
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:61
中文關鍵詞:離子交換膜反應器丙烯化
外文關鍵詞:Phenol、Ion-Exchange Membrane、Reactor、Allylation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:113
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
通常對於酚的回收都採用氧化、吸附、萃取等方法,本研究提出以離子交換膜將模擬廢水中之酚回收成一具有經濟價值的產物。研究內容主要以離子交換膜於連續式攪拌薄膜反應器進行酚丙烯化反應,合成丙烯基苯基醚。探討變因有:濃度、溫度、攪拌速率、流速。針對濃度在5000ppm以下的酚做處理。並以水相為限量試劑,油相相對於水相為高濃度情形下進行反應。
水相為3425ppm與5000ppm,油相為其濃度30倍與45倍,滯留時間180分鐘下,酚的去除率及回收的產物產率可達95%。在65oC下達反應平衡時,求得反應速率常數為k=0.099 dm3.s-1.mol-1.m-2。攪拌速率在400rpm以上時,不會影響反應的質傳速率。水相與油相流速同時降低時,去除率與產率增加,流速同時增加時,去除率與產率下降。水相流速固定,(a)油相流速降低時,產率與去除率增加;(b)油相流速增加,產率與去除率降低。油相流速固定,(a) 水相流速降低時,產率與去除率增加;(b)水相流速增加,產率與去除率降低。因此,不管是水相或油相,只要其中一個流速增加,則產率和去除率降低;反之,其中一個流速降低,則產率和去除率增加。水相濃度與反應速率成正比,水相濃度越高,反應速率越快。
It’s always used oxidization、adsorption and extraction etc., for recovery phenol. The research supports phenol recovery to a valuable product from simulated wasting water using ion exchange membrane. The contents mainly synthesize allyl phenyl ether by ion exchange membrane in continuous stirring membrane reactor. The conferring variations are:concentration、temperature、agitation rate、flow rate. The research is in connection with the concentration of phenol below 5000ppm. As phenol is the limited agent, the reaction proceeds with the high concentration in the organic phase opposite to in the aqueous phase.
3425ppm and 5000ppm in the aqueous phase,and 30 and 45 times concentration in the organic phase,and the residual time is 180 min,the removal of phenol and the yield of recovery product
can reach 95%.The reaction is in the equilibrium in 65oC,then the reaction rate k is dm3.s-1.mol-1.m-2.It doesn’t influence the diffusion rate of the reaction when the agitation rate is above 400rpm.The flow rate in the aqueous phase and organic phase decrease at the same time,the removal and the yield increase. The flow rate in the aqueous phase and organic phase increase at the same time,the removal and the yield decrease. The flow rate in the aqueous phase is fixed,(a) the flow rate in the organic phase decrease,the removal and the yield increase. (b) the flow rate in the organic phase increase,the removal and the yield decrease. The flow rate in the organic phase is fixed,(a) the flow rate in the aqueous phase decrease,the removal and the yield increase. (b) the flow rate in the aqueous phase increase,the removal and the yield decrease. Therefore, despite in the aqueous or organic phase,if only one of them the flow rate increases,then the removal and yield decrease;on the contrary,one of them the flow rate decreases,then the removal and yield increase. The concentration in the aqueous phase and the reaction rate are direct ratio. The higher the concentration in the aqueous phase,the faster the reaction rate.
中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅲ
目錄 Ⅳ
圖目錄 Ⅵ
表目錄 Ⅶ
符號說明 Ⅷ
第一章 緒論 1
1.1前言 1
1.2相間轉移觸媒催化技術(Phase-Transfer Catalysis,PTC)簡介 1
1.2-1相間轉移觸媒之優缺點及應用 2
1.2-2相間轉移觸媒之反應機構 3
1.3薄膜反應器簡介 3
1.3-1薄膜的介紹 3
1.3-2離子交換膜種類 6
1.3-3離子交換薄膜固定官能基的分類 7
1.3-4離子交換薄膜製備方法 8
1.3-5薄膜於反應器中的功能 13
1.3-6操作型式 14
1.3-7薄膜反應器的應用 16
1.4文獻回顧 17
1.4-1 利用薄膜反應器進行相間轉移觸媒催化反應 18
1.4-2 合成丙烯基苯基醚反應 21
1.5研究動機與目的 25
1.6 酚丙烯化反應系統的介紹 25
1.7離子交換薄膜的性質測定方法 26
1.7-1 陰離子交換膜含水率測定 26
1.7-2 交換膜的離子交換容量 27
1.7-3水溶液中酚陰離子與薄膜A-172中溴離子之離子交換反應…29
1.7-4水溶液中溴離子與薄膜A-172中酚陰離子之離子交換反應…29
1.7-5薄膜A-172於垂直萃取器中對酚鈉鹽之離子交換與質量傳送31
第二章 實驗部分 31
2.1 實驗藥品 32
2.2 實驗設備 34
2.3 分析儀器 34
2.4在CSTR薄膜反應器的反應動力學 35
2.4-1 實驗步驟 35
2.4-2 連續反應器裝置時注意事項 35
2.5 產物的分析 37
2.6 校正曲線 38
第三章 結果討論 41
3.1油水比例的影響 41
3.2溫度的影響 43
3.3攪拌速率的影響 44
3.4 流速的影響 46
3.4-1 水相5000ppm的油水比例 46
3.4-2 油水相流速相同 47
3.4-3 油相流速固定,改變水相流速 49
3.4-4 水相流速固定,改變油相流速 50
3.5 水相濃度的影響 51
3.6 平衡時的數學模式 53
第四章 總結與未來展望 56
4.1 總結 56
4.2 未來展望 57
參考文獻 58
自述 61
1.Abromovici, S., and Y. Sasson, Sodium Hypochlorite as Oxidane in Phase-Transfer Catalytic Systems. Part II. Oxidation of Aromatic Alcohols, J. Mol. Catal., 29,299-303 (1985).
2.Abromovici, S., R. Neumann and Y. Sasson, Sodium Hypochlorite as Oxidant in Phase-Transfer Catalytic Systems. Part I. Oxidation of Aromatic Aldehydes, J. Mol. Catal., 29, 291-297 (1985).
3.Alkabori, S., S. Miyamoto and H. Tanabe, Allylation of Phenoxide by Crown Ethers and their Polymers, J. Polym. Sci., Polym. Chem. Ed., 17, 3933-3937 (1979).
4.Anakiraman, B. J., and M. M. Sharma, Liquid-Liquid Slow and Fast Reaction: Micellar Catalysis, Chem. Eng. Sci., 37(10), 1497-1503 (1982).
5.Bram, G. A., and J. Sansoulent, Anionic Activation by Solid-Liquid PTC Without Solvent: Improvements Organic Synehesis, Israel J. Chem., 26, 291 (1985)
6.Freedman, H. H., Industrial Applications of Phase Transfer Catalysis (PTC): Past, Present and Future, Pure & Appl. Chem., 58(6), 857-868 (1986).
7.Halligudi, S. B., C. S. Sajanikumari, N. K. K. Raj, S. S. Deshpande, and M. P. Degaonkar, Liquid Phase Allylation of Phenol Using H Zeolite, J. Mol. Catal. A-Chem., 175, 161-167 (2001).
8.Helfferich, F., Ion Exchange, New York: McGraw-Hill book Company, (1962).
9.Hsiung, Y. E., Reactivity and Deactivation of Solid Phase Transfer Catalyust Quaternary Ammonium Salt Catalyst, M.S. Thesis, Chem. Eng. Dep., Cheng Kung Univ., Tainan, Taiwan, R.O.C. 1989.
10.Joshi, G. C., N. Singh and L. M. Pande, Dichlorocarbene Generation and Reactions in Cationic Micelles in Aqueous Phase. Part I Cyclo Addition to Alkenes, Tetrahedron Letters., 1461-1464 (1972).


11.Krishnakumar, V. K., and M. Sharma, A Novel Method Of Recovering Phenolic Substances from Aqueous Alkaline Waste Streeams, Ind. Eng. Chem. Proc. Des. Dev., 23, 410-416 (1986).
12.Mckillop, A., J. C. Fiaud, and R. P. Hug, The Use of Phase Transfer Catalysis for the Synthesis of Phenol Ether, Tetrahedron, 30, 1379-1382 (1974)
13.Molau, G. E., Heterogeneous Ion-Exchange Membrane, J. Membr. Sci., 8(3) ,309-330 (1981).
14.Quellmalz, D. and P. Zschocke , Novel Ion Exchange Membrane Based on an Aromatic Polyethersulfone, J. Membr. Sci., 22(2&3), 325-332 (1985).
15.S, L.D., The Engineering of Chemical Reactions, Oxford, New York, (1998).
16.Solaro, R., S. D. Antone and E. Chiellini, Heterogeneous Ethylation of Phenylacetonitrile, J. Org. Chem., 45, 4179-4183 (1980).
17.Solodar, J., Improved Organic-Inorganic Contact in the Benzene Condensation, Tetrahedron Letters, 3287-3288 (1971).
18.Stanley, T. J. and J. A. Quinn, Phase Transfer Catalysis in a Membrane Reactor, Chem. Eng. Sci., 42, 2313-2324 (1987).
19.Starks, C. M., C. L. Liotta and M. Halpern., Phase Transfer Catalysis, Fundamentals, Application and Industrial Perspective, Chapman & Hall, London,1994.
20.Sugiura, I., and N. Toshima, Catalytic Properties of Cyclodextrin for Selective C-O Bond Formation, Polym. J., 21 (8), 665-667 (1989).
21.Takaki, L. and J. Smid, Complexes of Crown Ethers and Glymes with
Difluroreuylbarium , J. Am. Chem. Soc., 96, 2588-2593 (1974).
22.Tomoi, M. and W. T. Ford, Mechanisms of Polymer-Supported Catalysis. 2. Reaction of Benzyl Bromide with Aqueous Sodium Cyanide Catalyzed by Polystyrene-Bound Onium Ions, J. Am. Chem. Soc., 103, 3828-3832 (1981).
23.Tomoi, M., E. Nakamura, Y. Hosokawa and H. Kakiuchi, Solvent Effects in Phase Transfer Reaction Promoted by Polymer-Supported Phosphonium Salts, J. Polymer Science: Polymer Chem. Ed., 23, 49-61 (1985).

24.Tundo, P. and P. Venturello, Synthesis Catalytic Activity, and Behaviors of Phase Transfer Catalysts Supported on Silica Gel. Strong Influence of Substrate Adsorption on the Polar Polymeric Matrix on the Efficiency of the Immobilized Phosphonium Salts, J. Am. Chem. Soc., 6606-6613 (1979)
25.Tundo, P., P. Venturello and E. Angeletti, Phase Transfer Catalysts Immobilized and Absorbed on Alumina and Silica Gel, J. Am. Chem. Soc., 104, 6551-6555 (1982).
26.Wu, H. S. and J. J. Lai, Product Selectivity of Phenoxide Allylation in Phase-Transfer Catalyzed Reaction System, J. Chin. Inst. Chem. Eng., 26, 277-283 (1995).
27.方貞凱,以Polysulfone製備離子交換薄膜及其在蛋白質分離上的應用,中興大學化學工程研究所碩士論文,台中 (2000).
28.吳玉凱,四級銨化離子薄膜製備與性質分析,元智大學化學工程學系,中壢(2003).
29.吳俊民,應用固-液及液-液相相間轉移觸媒合成丙烯基苯基醚之醚化反應動力學研究,中興大學化學工程研究所碩士論文,台中,(2000)。
30.李志清,應用固定化相間轉移觸媒催化酚鈉鹽之離子交換及醚化反應動力學研究,中興大學化學工程研究所碩士論文,台中,(2001)。
31.姜志新、諶竟清、宋正孝,離子交換工程,天津大學出版社(1992)
32.高以桓,膜分離技術基礎,科學出版社,北京(1989).
33.張光榮,以聚乙二醇為相轉移觸媒反應合成烯丙基苯基醚之研究,國立清華大學化學工程研究所博士論文,新竹,(1990)。
34.郭文正、曾添文,薄膜分離,高立出版社 (1998).
35.陳東煌,黃定加,薄膜反應器,化工,44(4),75-91 (1997)。
36.劉茉娥,膜分離技術,化學工業出版社,北京 (1998)
37.羅美惠,在薄膜反應器進行酚丙烯化反應,元智大學化學工程學系,中壢(2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔