(18.206.238.77) 您好!臺灣時間:2021/05/18 05:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:李協恒
研究生(外文):Shie-Heng Lee
論文名稱:利用弧光放電法合成奈米碳管及其表面改質與應用在自組裝場發射元件之研究
論文名稱(外文):Surface-modified Carbon Nanotubes Synthesized by Arc-discharge Method and Its Application on Self-assembly Field Emission Devices
指導教授:林錕松
指導教授(外文):Kuen-Song Lin
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:204
中文關鍵詞:奈米碳管弧光放電法表面改質電泳沉積電荷形成劑場發射陰極
外文關鍵詞:Carbon nanotubeArc discharge methodSurface functionalizationElectrophoresis depositionChargerField emitter device
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
由於奈米碳管的特殊結構及特性,使其具有導電性佳、高縱橫比及尖端曲率半徑小等特點,故場發射特性佳,可應用於場發射平面顯示器。因此,本研究最主要目的為探討以弧光放電法合成奈米碳管之最佳參數條件,再利用酸處理方式使奈米碳管達到純化與表面改質的效果;最後並以電泳沉積技術,將奈米碳管沉積在基板上,形成一場發射元件。
實驗中在使用電弧放電法合成多層奈米碳管時,不須添加任何金屬觸媒,奈米碳管在陰極沉積物之內層部份為束狀排列,黑灰色堅硬的外殼,為碳奈米顆粒、富勒烯(fulerenes)、一些非結晶型的碳及不純物所組成。由場發射掃描式電子顯微鏡(FE-SEM)及穿透式電子顯微鏡(TEM)分析可知,奈米碳管的層數約15~25層,內徑4~5 nm,外徑15~20 nm;並以X光粉末繞射儀(XRPD)、熱重量分析儀(TGA)、拉曼光譜(Raman spectroscopy)分析弧光放電法合成奈米碳管結構之結晶特性與純度。XRPD分析結果顯示2θ= 26.3˚有一強烈繞射訊號,顯示具有結晶性的六方平面石墨結構;拉曼光譜分析結果顯示ID/IG= 0.249,表示弧光放電法成長之奈米碳管具有極佳之石墨結晶與純度;TGA分析結果顯示,奈米碳管之氧化分解溫度為600~715℃,顯示奈米碳管之結構穩定而強韌。
所合成之奈米碳管經過酸處理後,使用TEM、拉曼光譜及傅利葉轉換/擴散反射紅外光分析儀(Fourier transform infrared spectroscopy with diffuse reflectance infrared Fourier transform spectroscopy (FTIR/DRIFTS))進行晶相及表面結構分析,發現奈米碳管表面經強硝酸/硫酸/過氧化氫改質處理後會造成許多缺陷而產生開口,且有羧基官能基團(-COOH)產生,由FTIR光譜可知-COOH波長在1690~1760 cm-1,氫氧基官能基團(-OH)波長在3500~3650 cm-1,且ID/IG值由0.249明顯提高至0.87。
為了測試奈米碳管沉積在基板之場發射元件特性,進一步使用液相沉積技術將奈米碳管粉末均勻分散於異丙醇(IPA)溶劑中,並提供一電場,使帶正電的奈米碳管因受電場的影響而朝向負電極移動,進而沉積在基板上,形成一黑色奈米碳管薄膜,不同的金屬鹽類電荷形成劑所配製的奈米碳管懸浮液,在電泳沉積的過程中表現出不同的電泳沉積效率、均勻度及表面附著力,以MgCl2、InCl3、AgNO3及NaCl為Charger所調配的奈米碳管懸浮液,奈米碳管成膜性優劣結果依序為MgCl2 >InCl3 >AgNO3 >NaCl,量測場發射效率結果為MgCl2 >InCl3 >AgNO3 >NaCl。
奈米碳管薄膜面積1×1 cm2,陰極與陽極之間間距150 μm,在5×10-5 Torr真空系統內量測其電流密度與電場之曲線關係,測得在電流密度為10 μA/cm2之情形下,起始電場為2.26 V/μm;在電流密度為10 mA/cm2下,截止電場為4.33 V/μm,已具有日後產品商業化之潛力。
Carbon nanotubes (CNTs) have attracted considerable attention in field emitter applications due to their unique structure, high aspect ratio and high emission current. Since having low voltage supply, it can launch an electron at the CNTs tip to be a strong electric field. The property of field emission of CNTs makes them promising candidates for field emission display applications. Thererfore, the main objectives of the present study were to investigate the optimal conditions of synthesis, purification, and surface-modified with acid treatment of CNTs by arc discharge (AD) method. Finally, the deposited CNTs film on conducting substract surfaces by electrophorestic deposition technique to achieve a field emitter device.
Experimentally, due to the synthesis of multi-wall CNTs (MWCNTs), no catalyst was used and the bundle CNTs were found in the inner region of the cathode deposition. From field-emission scanning microscopy (FESEM) microphotos, the surrounding of AD-MWCNTs was a hard gray shell consisting of nanoparticles, fullerenes or amorphous carbons. TEM (transmission electron microscopy) images showed the fine structure of AD-MWCNTs, which inner diameter and outer diameter were ranged of 4~5 nm and 15~20 nm with 15~25 layers, respectively. In addition, the data of crystallinity and purification of AD-MWCNTs synthesized by arc discharge method were further identified by using X-ray powder diffractometer (XRPD), thermal gravimetric analyzer (TGA) or Raman spectroscopy. From XRPD spectra of AD-MWCNTs, the main peak at 2θ= 26.3˚was intensive. It indicated that the AD-MWCNTs have stronger hexagonal well-graphited structures. Identity of D-band peak divided by G-band equal 0.249 (i.e. ID/IG = 0.249) from Raman spectrum that showing clearly AD-MWCNTs had well-graphited crystal and high purity. The TGA analyses pointed out that the decomposition temperatures of AD-MWCNTs were aroud 600~715℃.
After being treated by peroxide hydrogen, nitric or sulfuric acid, the MWCNTs were measured using Fourier transform infrared spectroscope with diffuse reflectance infrared Fourier transform spectroscopy (FTIR/DRIFTS), SEM, Raman spectrum, and TEM. It produced a large number of open ends for CNTs and carboxyl groups on CNTs. FTIR spectra showed the characteristic vibrational modes of carbonyl (-COOH) group (ca. 1690~1760 cm-1) and hydroxyl (-OH) group (ca. 3500~3650 cm-1) are apparent. The ratio of identity of D-band peak to G-band is 0.87 (i.e. ID/IG = 0.87).
Finially, suspension of AD-MWCNTs in IPA solvent was stable and suppled a direct current electrical field between the substrate of a silver paste and a counter electrode. The AD-MWNTs migrated toward the substrate and deposition on the substrate surface. Different kinds of charger to formulate the AD-MWCNT suspension liquid had different deposition effect, uniformity and surface adhesion. The charger such as MgCl2, InCl3, AgNO3 or NaCl was used to formulate the CNT suspension, the filming efficiency of AD-MWCNT films was MgCl2 >InCl3 >AgNO3 >NaCl. Moreover, the field emission efficiency of the chargers was also MgCl2 >InCl3 >AgNO3 >NaCl in series.
The electron field-emission characteristics of these deposition technique used for the deposited CNT films were measured in a vacuum chamber at 5×10-5 Torr base pressure. The emission J-E property of the patterned film was 1×1 cm2 and the cathode-anode distance was 150 μm. In the first test, the turn-on electric field under 10 μA/cm2 current density and the threshold electric field under 10 mA/cm2 current density were found to be 2.26 V/μm and 4.33 V/μm, respectively.
摘 要 i
Abstract iii
致 謝 vi
目 錄 viii
圖 目 錄 i
表 目 錄 xii
第一章 前言 1
第二章 文獻回顧 4
2.1 奈米碳管發展歷史 4
2.2 奈米碳管的結構 9
2.3 奈米碳管的特性 11
2.3.1 奈米碳管的機械特性 11
2.3.2 奈米碳管的場發射理論 15
2.4 奈米碳管之成長方法 18
2.4.1 化學氣相沉積法 18
2.4.1.1 微波輔助加熱化學氣相沉積法 20
2.4.1.2 熱烈解有機氣體化學氣相沉積法 22
2.4.1.3 電漿輔助氣相沉積法 23
2.4.2 弧光放電法 24
2.4.3 雷射剝蝕法 26
2.5 奈米碳管之表面改質與純化方法 28
2.5.1 氧化法 32
2.5.2 酸液氧化法 33
2.5.3 過濾法 34
2.5.4 色層分離法 35
2.6 奈米碳管之自組裝(Self-assembly)方法 36
2.6.1 化學氣相沉積法 37
2.6.2 表面縮合法(Surface condensation) 38
2.6.3 自組裝法 39
2.6.4 電泳沉積法 41
2.7 奈米碳管的應用 44
2.7.1 奈米尺寸探針(Nano-size probe) 44
2.7.2 場效應電晶體(Field effect transistor, FET) 45
2.7.3 電極與電容器(Electrode & Capacitor) 46
2.7.4 儲氫材料(Hydrogen uptake material) 47
2.7.5 複合材料中的強化材料 48
2.7.6 電子發射源材料應用 49
2.7.7 奈米碳管毛刷 54
第三章 實驗步驟與分析方法 56
3.1 弧光放電法合成奈米碳管 56
3.1.1 藥品及實驗裝置 56
3.1.2 實驗步驟 58
3.2 奈米碳管純化與表面改質 60
3.2.1 藥品及實驗裝置 60
3.2.2 實驗步驟 61
3.3 電泳沉積法製備場發射元件 63
3.2.1 藥品及實驗裝置 63
3.3.2 實驗步驟 65
3.4 分析方法 66
3.4.1 穿透式電子顯微鏡 66
3.4.2 場發掃描式電子顯微鏡 69
3.4.3 熱重量分析儀 71
3.4.4 拉曼光譜分析 74
3.4.5 傅立葉轉換紅外線光譜分析 76
3.4.6 比表面積測試 79
3.4.7 X光粉末繞射儀 82
3.4.8 場發射特性量測 85
3.4.9 三次元座標量測儀 86
第四章 結果與討論 88
4.1 電弧放電法合成多層奈米碳管(Multi-wall carbon nanotubes,MWNTs) 88
4.1.1 不同成長因素對奈米碳管合成的影響 89
4.1.1.1 電流對產率的影響 89
4.1.1.2 氣體種類對碳管合成的影響 92
4.1.1.3 反應腔體壓力對產率的影響 93
4.1.1.4 其它影響因素 95
4.1.1.5 奈米碳管成長參數最佳化 96
4.1.2 奈米碳管的分析 99
4.1.2.1 陰極沉積物SEM觀察 99
4.1.2.2 奈米碳管拉曼光譜分析 112
4.1.2.3 奈米碳管XRD分析 115
4.1.2.4 奈米碳管熱重分析 117
4.2 奈米碳管的純化與表面改質 119
4.2.1 傅立葉轉換紅外線光譜分析 119
4.2.2 奈米碳管拉曼光譜分析 124
4.2.3 奈米碳管熱重分析 128
4.2.4 奈米碳管酸處理後TEM、SEM觀察 131
4.3 液相沉積法製備場發射陰極板 140
4.3.1 奈米碳管懸浮液的配製 141
4.3.1.1 金屬鹽類的影響 142
4.3.1.2 分散劑的影響 148
4.3.1.3 奈米碳管懸浮液之粒徑與TEM分析 155
4.3.2 電壓、陰陽極間距與奈米碳管薄膜之關係 159
4.3.3 奈米碳管沉積薄膜之表面觀察 161
4.3.3.1 奈米碳管薄膜SEM觀察 161
4.3.3.2 奈米碳管薄膜EDS觀察 163
4.3.4 奈米碳管電泳沉積薄膜之場發射特性量測 166
4.3.5 奈米碳管電泳沉積場發射元件Lighting 171
第五章 結論及未來研究方向 175
5.1 結論 175
5.2 未來研究方向及建議 177
參考文獻 178
附錄A 奈米碳管Raman光譜分析 196
附錄B 奈米碳管FTIR光譜分析 197
附錄C 奈米碳管微分熱重量分析 201
附錄D 奈米碳管場發射特性量測 202
[1]Iley R. and Riley H. L., J. chem. Soc., 1362 (1948)
[2]Davis W. R., Slawson R. J., and Rigby G.R., Nature, 171 (1953).
[3]Hofer L. J. E., Sterling E., and MacCarthey J. T., Structure of carbon deposited from marbon monoxide on iron, cobalt and nickel., J. Phys. Chem., 59, 1153 (1955)
[4]Lange H., Huczko A., Byszewski P., Mizera E., and Shinohara H., Influence of boron on carbon arc plasma and formation of fullerenes and nanotubes, Chem Phys Lett., 289(1-2), 174-180 (1998).
[5]Kratschmer W., Lamb L. D., Fostiropouls K., and Huffman R. D., Solid C60:a new form of carbon, Nature, 347(6291), 354-357 (1990)
[6]Iijima S., Helical microtubules of graphitic carbon, Nature, 354(6348), 56-58 (1991).
[7]Lau K. T. and Hui D., The revolutionary creation of new advanced materials-carbon nanotube composites, Composite: Part B, 33(4), 263-277 (2002).
[8]Mayer A. and Lambin Ph., Quantum-mechanical simulations of field emission from carbon nanotubes, Carbon, 40(3), 429-436 (2002).
[9]Kibis O. V., Electronic phenomena in chiral carbon nanotubes in the presence of a magnetic field, Physica E, 12(1-4), 741-744 (2002).
[10]Takanori I., Kazume N., Mamoru B., and Masayuki H, First principles calculations for electronic band structure of single-walled carbon nanotube under uniaxial strain, Surface Science, 514(1-3), 222-226 (2002).
[11]Dresselhaus M. S., Dresselhaus G., and Saito R., Physics of carbon nanotubes, Carbon, 33(7), 883-891 (1995).
[12]Collins P. G. and Avouris P., Nanotubes for electronics, Scientific American, December, 38-45 (2000).
[13]Treacy M. M. J., Ebbesen T. W., and Gibson J. M., Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature, 381(6584), 678-680 (1996).
[14]Poncharal P, Wang Z. L., Ugarte D., and De Heer W. A., Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science, 283(5407), 1513-1516 (1999).
[15]Falvo M. R., Clary G. J., Taylor R. M. II, Chi V., Brooks F. P., Washrn S., and Superfine R., Bending and buckling of carbon nanotubes under large strain, Nature, 389(6651), 582-584 (1997).
[16]Wong E. W., Sheehan P. E., and Lieber C. M., Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science, 277(5334), 1971-1975 (1997).
[17]Yu M. F., Lourie O., Dyer M. J., Moloni K., Kelly T. F., and Ruoff R. S., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 287(5453), 637-640 (2000).
[18]Dai H., Carbon nanotubes: opportunities and challenges, Surface science, 500(1-3), 218-241 (2002).
[19]Poncharal P, Wang Z. L., Ugarte D., and De Heer W. A., Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science, 283(5407), 1513-1516 (1999)..
[20]Yu M. F., Lourie O., Dyer M. J., Moloni K., Kelly T. F., and Ruoff R. S., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 287(5453), 637-640 (2000).
[21]Ruoff R. S. and Lorents D. C., Mechanical and thermal properties of carbon nanotubes, Carbon, 33(7), 925-930 (1995).
[22]Maruyama S., A molecular dynamics simulation of heat conduction in finite length SWNTs, Physica B, 323(1-4), 193-195 (2002).
[23]Maruyama S., Einarsson E., Murakami Y., and Edamura T., Growth process of vertically aligned single-walled carbon nanotubes, Chem. Phys. Lett., 403, 320-323 (2005).
[24]Huh Y., Lee J. Y., and Lee C. J., Growth of vertically aligned carbon nanotube emitters on patterned silicon trenches for field emission applications, Thin Solid Films, 475, 267-270 (2005).
[25]Hone J., Hone J., Zettl A., and Whitney M., Thermal conductivity of single-walled carbon nanotubes, Synthetic metals, 103(1-3), 2498-2499 (1999).
[26]Heer W. A., Châtelain A., and Ugarte D., A carbon nanotube field-emission electron source, Science, 270(5239), 1179-1180 (1995).
[27]Rinzler A. G., Hafner J. H., Nicolaev P., Lou L., Kim S. G., and Tomanek D., Unraveling nanotubes: field emission from an atomic wire, Science, 269(6545), 1550-1553 (1995).
[28]施漢章,奈米碳管之現況與展望,中興大學工程學刊,13(1), 1-19 (2002)。
[29]Choi W. B., Chung D. S., Kang J. H., Kim H. Y., Jin Y. W., Han I. T., Lee Y. H, Jung J. E., Lee N. S., Park G. S., and Kim J. M., Fully sealed high-brightness carbon-nanotube field-emission display, Appl. Phys. Lett., 75(20), 3129-3131 (1999).
[30]Tans S. J., Verschueren A. R. M., and Dekker C., Room-temperature transistor based on a single carbon nanotube, Nature, 393(6680), 49-52 (1998).
[31]Saito Y., Okuda M., Fujimoto N., Yoshikawa T., Tomita M., and Hayashi T, Single-wall carbon nanotubes growing radially from Ni fine particles formed by arc evaporation, Jpn. J. Appl. Phy., 33(4A), L-526-L-529 (1994).
[32]Iijima S., Graphite filaments having tubular structure and method of forming the same, U.S Patent 5830326 (1997).
[33]Guo T., Nikolaev P., Thess A., Colbert D.T., and Smalley R. E., Catalytic growth of single-walled nanotubes by laser vaporization, Chem. Phys. Lett., 243(1-2), 49-54 (1995).
[34]Guo T., Nikolaev P., Rinzler A. G., TomBnek D., Colbert D. T., and Smalley R. E., Self-assembly of tubular fullerenes, J. Phys. Chem., 99(27), 10694-10697 (1995).
[35]Thess A., Lee R., Nikolaev P., Dai H., Petit P., Robert J., Xu C., Lee Y. H., Kim S. G., Rinzler A. G., Colbert D. T., Scuseria G. E., Toma´nek D., Fischer J. E., and Smalley R. E., Crystalline ropes of metallic carbon nanotubes, Science, 273(5274), 483-487 (1996).
[36]Yokobson B. I. and Smalley R. E., Fullerene nanotubes: C1000000 and beyond, Am. Sci., 85, 324-326 (1997).
[37]Li W. Z., Xie S. S., Qian L. X., ChangB. H., Zou B. S., Zhou W. Y., Zhao R. A., and G. Wang, Large-scale synthesis of aligned carbon nanotubes, Science, 274(5293), 1701-1703 (1996).
[38]Journet C. and Bernier P., Appl. Phys. A: Mater. Sci. Process. 67, 1 (1998).
[39]Thess A., Lee R., Nikolaev P., Dai H., Petit P., Robert J., Xu C., Lee Y. H., Kim S. G., Rinzler A. G., Colbert D. T., Scuseria G. E., Tomanek D., Fischer J. E., and Smalley R. E., Science 273, 483 (1996).
[40]Lee C. J., Lyu S. C., Cho Y. R., Lee J. H., and Cho K. I., Diameter-controlled growth of carbon nanotubes using thermal chemical vapor deposition, Chem. Phys. Lett., 341(3-4), 245-249 (2001).
[41]Fan S., Chaplin M. G., Franklin N. R., Tombler T. W., Cassell A. M., and Dai H., Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science, 283(5401), 512-514 (1999).
[42]Ren Z. F., Huang Z. P., Xu J. W., Wang J. H., Bush P., Siegal M. P., and Provencio P. N., Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science, 282(5391), 1105-1107 (1998).
[43]Wu B., Zhang J., Wei Z., Cai S., and Liu Z., Chemical alignment of oxidatively shortened single-walled carbon nanotubes on silver surface, J. Phys. Chem. B, 105, 5075-5078 (2001).
[44]Nan X., Gu Z., and Liu Z., Immobilizing shortened single-walled carbon nanotubes (SWNTs) on gold using a surface condensation method, J. Colloid Interface Sci., 245, 311–318 (2002)
[45]Liu Z., Shen Z., Zhu T., Hou S., and Ying L., Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembling technique, Langmuir, 16(8), 3569-3573 (2000).
[46]Zhang J., Zou H., Qing Q., Yang Y., Li Q., Liu Z., Guo X., and Du Z., Effect of chemical oxidation on the structure of single-walled carbon nanotubes, J. Phys. Chem. B, 107, 3712-3718 (2003).
[47]Lim J. H., Yun W. H., Yoon M. H., Lee S. K., Kim C. H, Kim K., and Kim S. K., Selective thiolation of single-walled carbon nanotubes, Synthetic Metals, 139, 521–527 (2003).
[48]Ferrari B., Moreno R., Sarkar P., and Nicholson P. S., Electrophoretic deposition of MgO thick films from organic suspension, J. Eur. Ceram. Soc., 20, 99-106 (2000).
[49]Martınez M. T., Callejas M. A., Benito A. M., Cochet M., Seeger T., Anson A., Schreiber J., Gordon C., Marhic C., Chauvet O., Fierro J. L. G., and Maser W. K., Sensitivity of single wall carbon nanotubes to oxidative processing: structural modification, intercalation and functionalisation, Carbon , 41, 2247–2256 (2003).
[50]Lago R. M., Tsang S. C., Lu K. L., Chen Y. K., and Green M. L. H., Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups, J. Chem. Soc. Chem. Comm., 13, 1355-1356 (1995).
[51]Hwang K. C., Efficient cleavage of carbon graphene layers by oxidants, J. Chem. Soc. Chem. Comm., 2, 173-174 (1995).
[52]Liu J., Rinzler A. G., Dai H., Hafner J. H., Bradley R. K., Boul P. J., Lu A., Iverson T., Shelimov K., Huffman C. B., Rodriguez M. F., Shon Y. S., Lee T. R., Colbert D. T., and Smalley R. E., Fullerene pipes, Science, 280(5367), 1253-1256 (1998).
[53]Chen J., Hamon M. A., Hu H., Chen Y., Rao A. M., Eklund P. C., and Haddon R. C., Solution properties of single-walled carbon manotubes, Science, 282(5386), 95-98 (1998).
[54]Hamon M. A., Chen J., Hu H., Chen Y., Itkis M. E., Rao A. M., Eklund P. C., and Haddon R. C., Dissolution of single-walled carbon nanotubes, Adv. Mater., 11(10), 834-840 (1999).
[55]Wong S. S., Woolley A. T., Joselevich E., Cheung C. L., and Lieber C. M., Covalently-functionalized single-walled carbon nanotube probe tips for chemical force microscopy, J. Am. Chem. Soc., 120(33), 8557-8558 (1998).
[56]Riggs J. E., Guo Z., Carroll D. L., and Sun Y. P., Strong luminescence of solubilized carbon nanotubes, J. Am. Chem. Soc., 122(24), 5879-5880 (1998).
[57]Boul P. J., Liu J., Mickelson E. T., Huffman C. B., Ericson L. M., Chiang I. W., Smith K. A., Colbert D. T., Hauge R. H., Margrave J. L., and Smalley R. E., Reversible sidewall functionalization of buckytubes, Chem. Phys. Lett., 310(3-4), 367-372 (1999).
[58]Mickelson E. T., Huffman C. B., Rinzler A. G., Smalley R. E., Hauge R. H., and Margrave J. L., Fluorination of single-wall carbon nanotubes, Chem. Phys. Lett., 296(1-2), 188-194 (1998).
[59]Chen R. J., Zhang Y., Wang D., and Dai, H., Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization, J. Am. Chem. Soc., 123(16), 3838-3839 (2001).
[60]Bahr J. L., Yang J., Kosynkin D. V., Bronikowski M. J., Smalley R. E., and Tour J. M., Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode, J. Am. Chem. Soc., 123(27), 6536-6542 (2001).
[61]Satishkumar B. C., Govindaraj A., Mofokeng J., Subbanna G. N., and Rao C. N. R., Novel experiment with carbon nanotubes: opening, closing and functionalizing nanotubes, J. Phys. B, 29, 4925~4934 (1996).
[62]Pang L. S. K., Saxby J. D., and Chatfield S. P., Quantitative analysis of external magnetic fueld effects on the hydrogen-oxygen reaction on the tin dioxide surface,J. Phys. Chem., 97(35), 8839~8841 (1993).
[63]Tsang S. C., Harris P. J. F., and Green M. L. H., Thinning and opening of carbon nanotubes byoxidation using carbon dioxide, Nature, 362, 520~523 (1993).
[64]Bandow S., Rao A. M., Williams K. A., Thess A., Smalley R. E., and Eklund P. C., Purification of single-wall carbon nanotubes by microfiltration, J. Phys. Chem. B, 101, 8839~8844 (1997).
[65]Huh Y., Lee J. Y., and Lee C. J., Growth of vertically aligned carbon nanotube emitters on patterned silicon trenches for field emission applications, Thin Solid Films, 475, 267-270 (2005).
[66]Duesberg G. S., Burghard M., Muster J., Philipp G., and Roth S., Separation of carbon nanotubes by size exclusion chromatography, Chem. Commun., 3, 435~436 (1998).
[67]Wu B., Zhang J., Wei Z., Cai S., and Liu Z., Chemical alignment of oxidatively shortened single-walled carbon nanotubes on silver surface, J. Phys. Chem. B, 105, 5075-5078 (2001).
[68]Nan X., Gu Z., and Liu Z., Immobilizing shortened single-walled carbon nanotubes (SWNTs) on gold using a surface condensation method, J. Colloid Interface Sci., 245, 311–318 (2002)
[69]Liu Z., Shen Z., Zhu T., Hou S., and Ying L., Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembling technique, Langmuir, 16(8), 3569-3573 (2000).
[70]Zhang J., Zou H., Qing Q., Yang Y., Li Q., Liu Z., Guo X., and Du Z., Effect of chemical oxidation on the structure of single-walled carbon nanotubes, J. Phys. Chem. B, 107, 3712-3718 (2003).
[71]Lim J. H., Yun W. H., Yoon M. H., Lee S. K., Kim C. H, Kim K., and Kim S. K., Selective thiolation of single-walled carbon nanotubes, Synthetic Metals, 139, 521–527 (2003).
[72]Javey A., Tu R., Farmer D. B., Guo J., Gordon R. G., and Dai H., High performance n-type carbon nanotube field-effect transistors with chemically doped contacts, Nano Lett., 0(0), 1-4 (2005).
[73]Martınez M. T., Callejas M. A., Benito A. M., Cochet M., Seeger T., Anson A., Schreiber J., Gordon C., Marhic C., Chauvet O., Fierro J. L. G., and Maser W. K., Sensitivity of single wall carbon nanotubes to oxidative processing: structural modification, intercalation and functionalisation, Carbon, 41, 2247–2256 (2003).
[74]Zhou O., Shimoda H., Gao B., Oh S., Fleming L., and Yue A., Materials science of carbon nanotubes: fabrication, integration, and properties of macroscopic structures of carbon nanotubes, Acc. Chem. Res, 35, 1045-1053 (2002).
[75]Oh S. J., Cheng Y., Zhang J., Shimoda H., and Zhou O., Room-temperature fabrication of high-resolution carbon nanotube field-emission cathodes by self-assembly, Appl. Phys. Lett., 82(15), 2521-2523 (2003).
[76]Shimoda H., Oh, S. J., Geng H. Z., Walker R. J., Zhang X. B., McNeil L. E., and Zhou O., Self-assembly of carbon nanotubes., Adv. Mater, 14(12), 899-901 (2002).
[77]Ulman A., An introduction to ultrathin organic films: from langmuir- blodgett to self-assembly, Academic Press: Boston, 1991.
[78]Kurnosov D. A., Baturin A. S., Bugaev A. S., Nikolski K. N., Tchesov R. G., and Sheshin E. P., Influence of the interelectrode distance in electrophoretic cold cathode fabrication on the emission uniformity, Applied Surface Science, 215, 232–236 (2003).
[79]Nakayama Y. and Akita S., Field-emission device with carbon nanotubes for a flat panel display, Synthetic Metals, 117, 207±210 (2001).
[80]Choi W. B., Jin Y. W., Kim H. Y., Lee S. J., Yun M. J., Kang J. H., Choi Y. S., Park N. S., Lee N. S., and Kimb J. M., Electrophoresis deposition of carbon nanotubes for triode-type field emission display, Appl. Phys. Lett., 78(11), 1547-1549 (2001).
[81]Yamamoto K., Akita S., and Nakayama Y., Orientation and purification of carbon nanotubes using ac electrophoresis, J. Phys. D: Appl. Phys, 31, 34–36 (1998).
[82]Shane M. J., Valbot J. B., Sluzy E., and Hesse K. R., Zeta potential of phosphors, Collids and surface A, 96, 301~305 (1995).
[83]Baea J. C., Yoona Y. J., Leeb J. S., and Baik H. K., Field emission properties of carbon nanotubes deposited by electrophoresis, Physica B, 323, 168~170 (2002).
[84]Oh S. J., Zhang J., Cheng Y., Shimoda H., and Zhou O., Liquid-phase fabrication of patterned carbon nanotube field emission cathodes, Appl. Phys. Lett., 84(19), 3738~3740 (2004).
[85]ZhouO., Shimpda H., Gao B., Oh S., Fleming L., and YUE G., Materials science of carbon nanotubes: fabrication, integration, and properties of macroscopic structures of carbon nanotubes, Acc. Chem. Res. 35, 1045-1053 (2002).
[86]Oh S. J., Zhang J., Cheng Y., Shimoda H., and Zhou O., Room-temperature fabrication of high-resolution carbon nanotube field-emission cathodes by self-assembly, Appl. Phys. Lett., 82 (15), 2521~2523 (2003).
[87]Shimda H., Oh S. H., Geng H. Z., Walker R. J., Zhang X. B., Mcneil Z. L., and Otto Z., Self-assembly of acrbon nanotubes, Adv. Mater., 14(12), 899~902 (2002).
[88]Russ B. E. and Diego S., Method for depositing a resistive material n field emission cathode, United States Patent, US 6462467 B1, 2002.
[89]Zhao C., Vanderpere L., Vlengels J., and Van Der Diest, Cylindrical Al2O3-YTZP functionally graded materials by EPD, British Ceramic Transactions, 99(6), 284-287 (2000).
[90]Zhitomirsky, Electrophoretic and electrolytic deposition of ceramic coating on carbon fiber, J. Eur. Ceram. Soc., 18, 849-856 (1998).
[91]Yu R., Zhan M., Cheng d., and Yang S., Simultaneous synthesis of carbon nanoyubes and nitrogen-doped fullerenes in nitrogen atmosphere, J. Phys. Chem., 99, 1818-1819 (1995)
[92]Saito Y. and Uemura S., Field emission from carbon nanotubes and its application to electron sources, Carbon, 38, 169–182 (2000).
[93]Pradeep T., Vijayakrisjnam V., and Santra A., Interaction of nitrogen with fullerences : nitrogen derivatives of C60 and C70, J. Phys. Chem., 95, 10564-10565 (1991).
[94]Xiong Y., Xie Y., Li X., and Li Z., Production of novel amorphous carbon nanostructures from ferrocene in low-temperature solution, Carbon, 42(8-9), 1447-1453 (2004).
[95]Sun Y. P., Fu K., Lin Y., and Huang W., Functionalized carbon nanotubes: properties and applications, Acc. Chem. Res., 35(12), 1096-1104 (2002).
[96]Liu J., Shao M., Xie Q., Kong L., Yu W., and Qian Y., Single-source precursor route to carbon nanotubes at mild temperature, Carbon, 41(11), 2101-2104 (2003).
[97]Gao R., Wang Z. L., and Fan S., Kinetically controlled growth of helical and zigzag shapes of carbon nanotubes, J. Phys. Chem. B, 104(6), 127-1234 (2000).
[98]Pohl H. A., Dielectrophoresis, Cambridge University Press: Cambridge, UK, (1978).
[99]Van der Biest, O., Vandeperre, L. J. Electrophoretic deposition of materials. Annu. Rev. Mater., 29, 327-330 (1999).
[100]Dai h., Hafner J. H., Nanotubes as nanoprobes in scanning probe microscopy, Nature, 384, 147-150 (1996).
[101]Hosseinbabaei F. and Raissidehlcordi B., Electrophooretic deposition of MgO thick films from an acetone suspension, J. Eur. Ceram. Soc., 20, 2165-2168 (2000).
[102]Nishijima H., Kamo S., Akita S., and Nakayama Y., Carbon-nanotube tips for scanning probe microscopy: preparation by a controlled process and observation of deoxyribonucleic acid, Appl. Phys. Lett., 74, 4061-4063 (1999).
[103]Hafner J. H. and Cheung c. h., Growth of nanotubes for probe microscopy tips, Nature, 398, 761-762 (1999).
[104]Martel R. and chmidt T., Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett., 73, 2447-2449 (1998).
[105]Bezryadin A. and Lau C. N., Quantum suppression of superconductivity in ultrathin nanotubes, Nature, 404, 971-974 (2000).
[106]Lee S. M. and Lee Y. H., Hydrogen storage in single-walled carbon nanotubes, Appl. Phys. Lett, 76, 2877-2879 (2000).
[107]Chen P., Wu X., Lin J., and Tan K. L., High H uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures, Science, 285, 91-93 (1999).
[108]Moreno J. M. C. and Yoshimura M., Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon, J. Am. Chem. Soc., 123(4), 741-742 (2001)
[109]Biercuk M. J., Liaguno M. C., Radosavljevic M., Hyun J. K., and Johnson A. T., Carbon nanotube composites for thermal management, Appl. Phys. Lett., 80(15), 2767-2769 (2002)
[110]Heer W. A., Châtelain A., and Ugarte D., A carbon nanotube field-emission electron source, Science, 270(5239), 1179-1180 (1995).
[111]Rinzler A. G., Hafner J. H., Nicolaev P., Lou L., Kim S. G., and Tomanek D., Unraveling nanotubes: field emission from an atomic wire, Science, 269(6545), 1550-1553 (1995)
[112]施漢章,奈米碳管之現況與展望,中興大學工程學刊,13(1), 1-19 (2002)。
[113]Choi W. B., Chung D. S., Kang J. H., Kim H. Y., Jin Y. W., Han I. T., Lee Y. H, Jung J. E., Lee N. S., Park G. S., and Kim J. M., Fully sealed high-brightness carbon-nanotube field-emission display, Appl. Phys. Lett., 75(20), 3129-3131 (1999).
[114]Saito Y., Yosfikawa T., and Inagaki M., Chem. Phys. Lett, 204, 277-281 (1994).
[115]Yudasaka M., Ichihashi T., Komatsu T., and Iijima S., Single-wall carbon nanotubes formed by a single laser-beam pulse, Chem. Phys. Lett., 299, 91–96 (1999).
[116]Zhou O., Shimoda H., Gao B., Oh S., Fleming L., and Yue G, Materials science of carbon nanotubes: fabrication, integration, and properties of macroscopic structures of carbon nanotubes, Acc. Chem. Res, 35, 1045-1053 (2002).
[117]Omer O. and Lue J., Electrophoretic deposition of material, Annu. Rer. Mater. Sci., 29, 327-352 (1999).
[118]Rajenda N. B., Merrilea J. M., and Clive A. R., Free standing sintered ceramic films from electrophoretic deposition, Jpn. J. Appl. Phys., 38, 6462-6456 (1999).
[119]Jean J. H., Electrophorteic deposition of Al2O3-SiC composition, Mater. Chem. Phys., 40, 258-290 (1995).
[120]Girishkumar G., Vinodgopal K., and Kamat P. V., Carbon nanotubes in portable fuel sells: single-walled warbon nanotube electrodes for methanol oxideation and oxygen reduction, J. Phys. Chem. B., 108, 19960-19966 (2004).
[121]Gao B. and Tang X. P., Electrochemical intercalation of single-walled carbon nanotubes with lithium, Chem. Phys. Lett. 307, 153-157 (1999).
[122]Che G. and Lakshmi B. B., Carbon nanotubes membranes for electrochemical energy storage and production, Nature, 393, 346-349 (1998).
[123]Kong J., Franklin N. R., Zhou C., Chapline M.G., Peng S., Cho K., and Dai H., Nanotube molecular wires as chemical sensors, Science, 287, 622-625 (2000).
[124]Wood J. R. and Wagner H. D., Single-wall carbon nanotubes as molecular pressure sensors, Appl. Phys. Lett., 76, 2883 –2885 (2000).
[125]Baughman R. H. and Cui C., Carbon nanotubes actuators, Science, 284, 1340-1344 (1999).
[126]U.S. Department of Energy, office of conservation and renewable energy, Hydrogen program plan fy1993-fy1997, DOE/CH10093-147, National renewable energy laboratory, Gloden, Colorado (1992).
[127]Dillon A. C. and Jones K. M., Storage of hydrogen in single-walled carbon nanotubes, Nature, 386, 377379 (1997).
[128]Ziegler K. J., Gu Z., Peng H., Flor E. L., Hauge R. H., and Smalley R. E., Controlled oxidiative cutting of single-walled carbon nanotubes, J. Am. Chem. Soc., 127(5), 1541-1547 (2005).
[129]Pénicaud A., Poulin P., Derré A., Anglaret E., and Petit P., Spontaneous dissolution of a single-wall carbon nanotube salt,. J. Am. Chem. Soc., 127(1), 8-9 (2005).
[130]Hu J., Shi J., Li S., Qin Y., Guo Z. X., Song Y., and Zhu D., Efficient method to functionalize carbon nanotubes with thiol groups and fabricate gold nanocomposites, Chem. Phys. Lett., 401, 352-356 (2005).
[131]Chen C. X., Chen W. and Zhang Y., Synthesis of carbon nano-tubes by pulsed laser ablation at normal pressure in metal nano-sol, Physica E: low-dimensional system and nanostructures., 28(2), 121-127 (2005).
[132]Cao A., Veedu V. P., Li X., Ghasemi-Nejhad M. N. and Ajayan P. M., Multifunctional brushes made from carbon nanotubes, Nature materials/advances online publication/ www.nature.com/nature naturematerials., 1-6 (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top