(3.239.33.139) 您好!臺灣時間:2021/03/02 16:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊添登
研究生(外文):Tien-Teng Chuang
論文名稱:利用表面改質奈米零價鐵微粒處理受鉻/硝酸鹽/亞硝酸鹽污染水體之研究
論文名稱(外文):DecDecontamination of Chromium/Nitrate/Nitrite Species by Surface-Modified Zero-Valent Iron Nanoparticles
指導教授:林錕松
指導教授(外文):Kuen-Song Lin
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:195
中文關鍵詞:奈米零價鐵微粒鉻污染硝酸鹽/亞硝酸鹽吸附動力學X光吸收近邊緣結構延伸X光吸收精細結構
外文關鍵詞:Zero-valent iron nanoparticlesChromium contaminationNitrate/nitrite speciesAdsorption kineticsXANESEXAFS
相關次數:
  • 被引用被引用:2
  • 點閱點閱:227
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,國內受高污染硝酸鹽/亞硝酸鹽類之養殖業及重金屬鉻污染之水體十分嚴重,造成人體危害及環境之衝擊。因此,本研究之主要目的是探討利用化學還原法製備奈米零價鐵微粒,藉由精密光譜分析儀器檢測奈米零價鐵微粒吸附含氮鹽類及含鉻溶液後之變化與結構分析,並利用聚乙二醇(PEG)保護膜來增加零價鐵之還原污染物之效率。
實驗中,由穿透式電子顯微鏡(TEM)分析可明顯發現,在奈米零價鐵微粒表面上有5~10 nm之PEG高分子膜。經由同步輻射XANES分析奈米零價鐵粉對於處理硝酸鹽/亞硝酸鹽是將其還原為氮氣,零價鐵經氧化反應由零價轉為三價;奈米零價鐵粉對於六價鉻是進行還原反應將其還原成三價鉻;表示表面吸附及氧化還原反應,只在奈米零價鐵粉表面上同時進行。吸附動力結果顯示奈米零價鐵對於六價鉻是為擬一階反應(pseudo-first-order),處理污染水體濃度越低,則吸附方程式越趨近線性,而奈米零價鐵對於處理硝酸鹽/亞硝酸鹽則以二階反應使其線性迴歸。奈米零價鐵還原硝酸鹽及亞硝酸鹽之污染水溶液;硝酸鹽水溶液系統之pH值將會維持在8~9左右;亞硝酸鹽水溶液則維持在8.5~9.5左右。硝酸鹽類降解反應過程中,pH值為其重要之控制因子,低pH值環境下有助於奈米零價鐵粉對硝酸鹽降解速率之提昇。經由陰離子層析儀(IC)數據結果顯示每克零價鐵粉可分別還原100~300 ppm硝酸鹽及150~400 ppm亞硝酸鹽污染水體。由原子吸收光譜(AAS)數據結果顯示零價鐵可以有效地完全去除六價鉻污染水體。掃描式電子顯微鏡(FE-SEM)及X光粉末繞射儀(XRPD)結果顯示吸附鉻之奈米零價鐵粉微粒表面可能為紅褐色氧化鐵,結構成鬆散狀。經由X光吸收近邊緣結構(XANES)及延伸X光吸收精細結構(EXAFS)光譜顯示,吸附六價鉻之奈米零價鐵粉微粒上之鉻還原成Cr2O3;相反地,還原硝酸鹽及亞硝酸鹽後之奈米零價鐵粉微粒則氧化成Fe2O3。此外,亦利用共振非彈性X光散射光譜(RIXS)分析,可以更精確瞭解反應前後零價鐵微粒中Fe元素之價數介於2~3間。由於奈米零價鐵粉對於受鉻及含氮鹽類污染物之去除具有高活性、效果佳及且已有初步成效,故未來應用於重金屬污染場址之現址復育(in-situ remediation)技術。本研究亦是典型應用同步輻射光源及原子級分析光譜,研究奈米零價鐵微粒吸附受毒性鉻金屬及硝酸鹽/亞硝酸鹽污染水體,在其表面氧化還原反應之實例。
In recent years, chromium, nitrate, and nitrite contaminants are very serious problems in Taiwan. Chromium, nitrate or nitrite species are known to be toxic and carcinogenic, site remediation is necessarily required in order to reduce the risk to human races and ecosystems. Therefore, the main objectives of the present study were to investigate chemical reduction of chromium, nitrate or nitrite species by nanoscale zero-valent iron (ZVI) in aqueous solution and related reaction kinetics or pathways. Nanophase zero-valent iron powders could be enhanced the efficiency of reduction by adding polyethylene glycol (PEG ) nanofilms.
Experimentally, ZVI nanoparticles of this study were prepared by borohydride reduction method at room temperature and ambient pressure. At the surface of ZVI nanoparticles there coated about 5~10 nm film of polyethylene glycol measured by TEM. The existence of Cr species on the Fe(0) nanoparticles was also confirmed by XANES. It was also found that mainly Cr(III) with a small amount of Cr(0) was adsorbed on the Fe(0) nanoparticles. Kinetics analysis from batch studies revealed that the removal of Cr(VI) from aqueous reaction with nanoscale Fe(0) appeared to be a pseudo first-order with respect to contaminant substrates. The kinetic model of nitrate/nitrite reduction by nanoscale Fe(0) powder is proposed as second-order kinetic equation. The results showed that the degradation reaction of nitrate/nitrite was significantly effected by pH values. The faster rates of nitrate/nitrite reduction were shown at lower pH. The Cr-adsorbed Fe(0) nanoparticles measured by FE-SEM and XRD were abnormally incompact, it was possible that Fe(0) nanoparticles were, to some extent, oxidized in the adsorption process. This work exemplifies the utilization of XANES, XRD, and XPS to reveal the speciation and possible reaction pathway in a very complex adsorption and redox reaction process. EXAFS spectra showed Cr(VI) reduce to Cr2O3 and nitrate/nitrite reduce to N2 while oxidizing the Fe(0) to Fe2O3 electrochemically. In addition, by using resonant inelastic X-ray scattering (RIXS) technique, the fine valent of iron between 2 and 3 may be further investigated. It is also very clear that decontamination of chromium, nitrate or nitrite species in groundwater via the in-situ remediation with nanophase Fe(0) permeable reactive barriers would be environmentally attractive in the future.
摘 要 I
Abstract III
目 錄 V
圖 目 錄 X
表 目 錄 XV
第一章 前言 1
第二章 文獻回顧 4
2.1 鉻污染現況 4
2.1.1 鉻污染來源 4
2.1.2 鉻之性質 5
2.1.3 鉻污染危害 7
2.1.4 傳統鉻處理技術 9
2.2 含氮鹽類廢水簡介 11
2.2.1 水體中氮的型態 11
2.2.2 氮循環 12
2.2.3 水體中氮的管制量及相關法規 14
2.2.4 氮的分析方法 15
2.3 零價鐵處理技術的緣起與發展 16
2.3.1 零價鐵處理技術的緣起 17
2.3.2 零價鐵處理技術對去除鉻污染物上的應用 18
2.3.3 反應牆形式之地下水整治技術 27
2.4 奈米零價鐵之簡介 37
2.4.1 奈米微粒 37
2.4.2 奈米材料性質 38
2.4.3 奈米粒子的表面效應 39
2.4.4 奈米粒子的製備 42
2.4.5 奈米材料和技術的應用前景 43
2.4.6 鐵物質種類 45
2.4.7 奈米零價鐵製備方法 46
2.4.8 奈米零價鐵微粒 47
2.4.9 零價鐵還原鉻之反應式 50
2.5 聚乙二醇簡介 51
2.5.1 聚乙二醇性質 51
2.5.2 聚乙二醇應用 51
2.6 吸附模式 53
2.6.1 吸附理論 53
第三章 實驗方法與分析 56
3.1 實驗藥品 56
3.2 實驗器材 57
3.3 實驗步驟 58
3.3.1 合成奈米零價鐵 58
3.3.2 批次式試驗 60
3.3.3 連續式管柱試驗 62
3.3.4 PEG包覆溶解速率試驗 64
3.4 分析方法 65
3.4.1 穿透式電子顯微鏡 65
3.4.2 場發掃描式電子顯微鏡 67
3.4.3 原子吸收光譜 69
3.4.4 X光粉末繞射儀 71
3.4.5 比表面積 73
3.4.6 同步輻射吸收光譜 76
3.4.6.1 同步輻射光吸收實驗 76
3.4.6.2 實驗方法與步驟 78
3.4.6.3 實驗數據分析 79
3.4.7 共振非彈性X光散射 81
3.4.8 化學分析電子光譜儀 85
3.4.9 離子層析儀 87
3.4.10 總有機碳分析 90
第四章 結果與討論 93
4.1 奈米零價鐵粉合成及性質分析 93
4.1.1 奈米零價鐵粉之合成 93
4.1.2 奈米零價鐵粉之性質分析 95
4.2 聚乙二醇包覆奈米零價鐵粉之水中溶解速率分析 101
4.2.1 聚乙二醇包覆奈米零價鐵粉之膜厚及特性分析 101
4.2.2 聚乙二醇包覆奈米零價鐵粉之水中溶解速率計算 105
4.3 奈米零價鐵粉處理受鉻及含氮鹽類水體之吸附動力學分析 107
4.3.1 一階反應速率常數 107
4.3.2 一階反應之半衰期 112
4.3.3 奈米零價鐵粉還原鉻之動力學 113
4.3.4 硝酸鹽與亞硝酸鹽之動力學比較 117
4.3.5 電化學反應式之驗證 122
4.4 連續式管柱實驗數據分析 124
4.4.1 處理鉻污染水體管柱實驗數據分析 124
4.4.2 處理硝酸鹽污染水體管柱實驗數據分析 126
4.5 奈米零價鐵粉處理受鉻及含氮鹽類水體後之性質分析 128
4.5.1 FE-SEM性質分析 128
4.5.2 XPRD性質分析 130
4.5.3 XPS/ESCA性質分析 134
4.5.4 X光吸收邊緣結構性質分析 136
4.5.5 延伸細微結構X光吸收光譜性質分析 149
4.5.6 共振非彈性X光散射光譜分析 160
第五章 結論及未來研究方向 163
5.1 結論 163
5.2 未來研究方向 166
參考文獻 167
附錄A 奈米零價鐵粉處理鉻污染水體之數據結果 178
附錄B 奈米零價鐵粉處理硝酸鹽污染水體之數據結果 182
附錄C 奈米零價鐵粉處理亞硝酸鹽污染水體之數據結果 187
附錄D 聚乙二醇包覆奈米零價鐵粉之水中溶解數據結果 192
1.Xu X. R., Li H. B., Li X. Y., and Gu J. D., Reduction of hexavalent chromium by ascorbic acid in aqueous solutions, Chemosphere, 57(7), 609-613 (2004).
2.Fernandez-Sanchez J. M., Sawvel E. J., and Alvarez P. J. J., Effect of Fe0 quantity on the efficiency of integrated microbial-Fe0 treatment processes, Chemosphere, 54(7), 823-829 (2004).
3.Melitas N., Chuffe-Moscoso O., and Farrell J., Kinetics of Soluble Chromium Removal from Contaminated Water by Zerovalent Iron Media: Corrosion Inhibition and Passive Oxide Effects, Environ. Sci. Technol., 35(19), 3948-3953 (2001).
4.Su C., and Puls R. W., Nitrate Reduction by Zerovalent Iron: Effects of Formate, Oxalate, Citrate, Chloride, Sulfate, Borate, and Phosphate, Environ. Sci. Technol., 38(9), 2715-2720 (2004).
5.Mishra D., and Farrell J., Understanding Nitrate Reactions with Zerovalent Iron Using Tafel Analysis and Electrochemical Impedance Spectroscopy, Environ. Sci. Technol., 39(2), 645-650 (2005).
6.Nriagu J. Q., and Nieboer E., Chromium in Natural and Human Environments, Wiley Interscience, New York (1988).
7.Stein K. and Schwedt G., Chromium speciation in the wastewater from a tannery, Fresen. J. Anal. Chem., 350, 38-41 (1994).
8.Walsh A. R., and O’Halloran J., Chromium speciation in tannery effluent—I. An assessment of techniques and role of organic Cr(III) complexes, Water Res., 30(10), 2393-2400 (1996).
9.Walsh A. R., and O’Halloran J., Chromium speciation in tannery effluent—II. Speciation in effluent and in a receiving estuary, Water Res., 30(10), 2401-2412 (1996).
10.林敬二、楊美惠、楊寶旺、廖德章、薛敬和,「英‧中‧日 化學大辭典」,高立圖書公司(1993)。
11.Campanella L., Problems of speciation of elements in natural water: the case of chromium and selenium, In: Caroli S., Element Speciation in Bioinorganic Chemistry, Wiley Interscience, New York, 419-444 (1996).
12.Nieboer E., and Jusys A. A., Biologic chemistry of chromium, In: Nriagu J., O., and Nieboer E., Chromium in Natural and Human Environments, Wiley Interscience, New York, 21-81 (1988).
13.Anderson R. A., Essentiality of chromium in humans, Sci. Total Environ., 86(1-2), 75-81 (1989).
14.Gad C. S., Acute and chromium toxicity, Sci. Total Environ., 86(1-2), 149-157 (1989).
15.Lee K. P., Ulrich C. E., Geil R. G., and Trochimowicz H. J., Inhalation toxicity of chromium dioxide dust to rats after two years exposure, Sci. Total Environ., 86(1-2), 83-108 (1989).
16.聯合國環境規劃署、世界衛生組織合編,「硝酸鹽、亞硝酸鹽和N-亞硝基化合物」,中國環境科學出版社 (1987)。
17.陳琪婷,「以二氧化錳催化降解水中氨氮之研究」,碩士論文,國立中山大學海洋環境工程研究所(2003)。
18.黃宇宏,「養殖廢水氨氮去除速率之探討」,碩士論文,國立台灣大學生物產業機電工程研究所(2000)。
19.Hill M. J., Nitrate and Nitrite in Food and Water, Ellis Horwood Ltd., New York (1991).
20.Bems B., Jentoft F. C., and Schlogl R., Photoinduced decomposition of nitrate in drinking waterin the presence of titania and humic acids, Appl. Catal. B-Environ, 20(2), 155-163 (1999).
21.Permeable Reactive Barrier Technologies for Contaminant Remediation, U.S.A. EPA/600/R-98/125 (1998).
22.Gavaskar A. R., Gupta N., Sass B. M., Janosy R. J., and O’Sullivan D., Permeable barriers for ground water remediation design, construction and monitoring, Battelle Press, U.S.A. (1998).
23.Sweeny K. H., and Fischer J. R., Reductive degradation of halogenated pesticides, U. S. Patent, 4382865 (1972).
24.Sweeny K. H., and Fischer J. R., Decomposition of halogenated pesticides, U. S. Patent, 3737384 (1973).
25.Senzaki T., and Kumagai Y., Removal of chlorinated organic compounds from wastewater by reduction process: III. Treatment of tetrachloroethane with iron powder II, Kogyo yosui, 391, 29-35 (1991).
26.程淑芬,「斗匣式現地地下水污染復育技術之探討—含氯有機化合物乙玲價金屬反應性透水牆還原脫氯之研究」,博士論文,國立台灣大學環境工程學研究所(2000)。
27.Reynolds G. W., Hoff J. T., and Gillham R. W., Sampling bias caused by materials used to monitor halocarbons in groundwater, Environ. Sci. Technol., 24(1), 135-142 (1990).
28.Gillhan R. W., and O’Hannesin S. F., Metal-catalyzed abiotic degradation of halogenated organic compounds, IAH Conference: Modern Trends in Hydrogeology, Hamilton, Ontario, May 10-13, 94-103 (1992).
29.Gillhan R. W., Cleaning halogenated contaminants from groundwater, U. S. Patent, 5266213 (1993).
30.McRate C. M., Blowes D. W., and Ptacek C., Laboratory-scale investigation of As and Se using iron oxides, Sixth Symposium and Exhibition on Groundwater and Soil Remediation, Montreal, Quebec, Canada, March 18-21 (1997).
31.Cantrell J. K., Kaplan D. I., and Wietsma T. W., Zero-valent iron for the in situ remediation of selected metals in groundwater, J. Hazard. Mater., 42(2), 201-212 (1995).
32.Palmer C. D., and Puls R. W., Natural attenuation of hexavalent chromium in groundwater and soils, U.S. EPA Ground Water Issue, EPA/540/S-94/505 (1994).
33.Puls R., and Paul C., Low –flow purging and sampling of groundwater monitoring wells with dedicated systems, GWMR Winter 1995, 116-123 (1995).
34.Gandhi S., Oh B. T., Schnoor J. L., and Alvarez P. J., Degradation of TCE, Cr(VI), sulfate, and nitrate mixtures by granular iron in flow-through columns under different microbial conditions, Water Res., 36(8), 1973-1982 (2002).
35.Gould J. P., The kinetics of hexavalent chromium reduction by metallic iron, Water Res., 16, 871-877 (1982).
36.Bowers A. R., Ortiz C. A., and Cardozo R. J., Iron process for treatment of Cr(VI) wastewaters, Metal Finishing 84-87 (1986).
37.Blowes D. W., and Ptacek C. J., Geochemical remediation of groundwater by permeable reactive walls: removal of chromate by reaction with iron-bearing solids, Subsurface Restoration Conference, 3rd International Conference on Ground Water Quality Research, Dallas, Texas June 21-24 (1992).
38.Powell R. M., Puls R. W., and Paul C. J., Chromate reduction and remediation utilizing the thermodynamic instability of zero-valence state iron, Proceedings Water Environment Federation, Innovative Solutions for Contaminated Site Management, Water Environment Federation, Miami, Florida, March 6-9 (1994).
39.Powell R. M., Puls R. W., Hightower S. K., and Sabatini D. A., Coupled iron corrosion and chromate reduction: Mechanisms for subsurface remediation, Environ. Sci. Technol., 29(8), 1913-1922 (1995).
40.Eary L. E., and Rai D., Kinetics of chromate reduction by ferrous ions derived from hematite and biotite at 25℃, Am. J. Sci., 289, 180-213 (1989).
41.Kent D. B., Davis J. A., Anderson L. C. D., Rea B. A., and White T. D., Transport of chromium and selenium in the suboxic zone of a shallow aquifer: Influence of redox and adsorption reactions, Water Resour. Res., 30(4), 1099-1114 (1994).
42.Blowes D. W., Ptacek C. J., Benner S. G., Waybrant K. R., and Bain J. G., In press, Porous reactive walls for the prevention of mine drainage: a review, Mineral Processing (1997).
43.Powell R. M., Puls R. W., Hightower S. K., and Clark D. A., Corrosive and geochemical mechanisms influencing in situ chromate reduction by metallic iron, 209th ACS National Meeting, American Chemical Society, Anaheim, California April 2-7, (1995).
44.Powell R. M., and Puls R. W., Proton generation by dissolution of intrinsic or augmented aluminosilicate minerals for in situ contaminant remediation by zero-valence-state iron, Environ. Sci. Technol., 31(8), 2244-2251 (1997).
45.Blowes D. W., Ptacek C. J., and Jambor J. L, In-Situ remediation of chromate contaminated groundwater using permeable reactive walls, Environ. Sci. Technol., 31(12), 3348-3357 (1997).
46.Blowes D. W., Puls R. W., Bennett T. A., Gillham R. W., Hanton-Fong C. J., and Ptacek C. J., In-situ porous reactive wall for treatment of Cr(VI) and trichloroethylene in groundwater, International Containment Technology Conference and Exhibition, St. Petersburg, Florida, February 9-12, (1997).
47.Pratt A. R., Blowes D. W., and Ptacek C. J., Products of chromate reduction on proposed remediation material, Environ. Sci. Technol., 31(9), 2492-2498 (1997).
48.蔡政勳,「零價鐵反應牆處理三氯乙烯污染物之反應行為研究」,碩士論文,國立中央大學環境工程研究所(2000)。
49.陳家洵,「台灣地區地下水污染之討論」,現代化研究,第12期,49-55 (1997)。
50.Nyer E. K., Dnapl-stop the madness, Ground Water Monit. R., 19(1), 62-66 (1999).
51.Wilson J. L., and Lin J., Duelling time costants: competing processes in aquifer contamination and remediation, Interational conference on groundwater quality protection, Taipei, 269-303 (1997).
52.Keely J. F., Introduction, Seminar publication: transport and fate of contaminants in the subsurface, Chapter 1, EPA-625-4-89-019, 1-4 (1989).
53.Starr R. C., and Cherry J. A., In-Situ remediation of contaminated ground water: the funnel-and-gate system, Ground Water, 32(3), 465-476 (1994).
54.Gillhan R. W., and O’Hannesin S. F., Enhanced degradation of halogenated aliphatics by zero-valent iron, Ground Water, 32(6), 958-967 (1994).
55.盧至人(譯),「地下水的污染整治」,國立編譯館(1998)。
56.Cantrell K. J., Kaplan D. I., and Wietsma T. W., Zero-valent iron for the in situ remediation of selected metals in groundwater, J. Hazard. Mater., 42(2), 201-212 (1995).
57.李曉嵐,「奈米鐵粉結合電動力法處理含硝酸鹽土壤之研究」,碩士論文,國立中山大學環境工程研究所(2002)。
58.馬振基,「奈米材料科技原理與應用」,全華科技圖書公司(2003)。
59.張立德、牟季美,「奈米材料和奈米結構」,滄海書局(2002)。
60.郭正次、朝春光,「奈米結構材料科學」,全華科技圖書公司(2004)。
61.黃惠忠,「奈米材料分析」,滄海書局(2004)。
62.林正良,「化學工業科技人才培訓計畫—介面化學工業技術人才培訓:電子科技用介面化學應用原理(一)」,經濟部工業局(2002)。
63.魏明芬,「磁性金屬氧化物奈米粒的製備與鑑定」,碩士論文,國立中正大學化學研究所(2002)。
64.Reetz M. T., and Helbig W., Size-selective synthesis of nanostructured transition metal cluster, J. Am. Chem. Soc., 116(16), 7401-7402 (1994).
65.王偉洪,「奈米金屬微粒溶膠材料製備技術」,環境工程會刊(2002)。
66.徐宏德,「奈米鐵金屬應用於硝酸鹽氮去除之研究」,碩士論文,國立台北科技大學環境規劃與管理研究所(2003)。
67.Ponder S. M., Darab J. G., and Mallouk T. E., Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported, Nanoscale Zero-valent Iron, Environ. Sci. Technol., 34(12), 2564-2569 (2000).
68.林彥宏,「Fe3O4-SiO2奈米核-殼結構粒子的製備與磁性研究」,碩士論文,東海大學物理學系研究所(2004)。
69.Johnson T. L., Scherer M. M., and Tratnyek P. G., Kinetics of halogenated organic compound degradation by iron metal, Environ. Sci. Technol., 30(8), 2634-2640 (1996).
70.Choe S., Chang Y. Y., Hwang K. Y., and Khim J., Kinetics of reductive denitrification by nanoscale zero-valent iron, Chemosphere, 41(8), 1307-1311 (2000).
71.Noland S., and Elliott B., Compositions for removing halogenated hydrocarbons from contaminated environments, European Patent, US2005006306 (2005).
72.Andrew F., Jing G., and David W., Process for producing a nanoscale zero-valent metal, European Patent, WO2004105984 (2004).
73.Noland S., and Elliott B., Compositions for removing hydrocarbons and halogenated hydrocarbons from contaminated environments, U. S. Patent, 6787034 (2004).
74.Alvarez P. J., Till B. A., Weathers L. J., Parkin G. F., and Schnoor J. L., Fe(o)-based bioremediation of aquifers contaminated with mixed wastes, U. S. Patent, 6719902 (2004).
75.Ponder S. M., and Mallouk T. F., Powerful reductant for decontamination of groundwater and surface streams, U. S. Patent, 6689485 (2004).
76.Reinhart D. R., Clausen C., Geiger C. L., Quinn J., and Brooks K., Zero-valent metal emulsion for reductive dehalogenation of DNAPLs, U. S. Patent, 6664298 (2003).
77.Nikolaidis N. P., Dobbs G. M., and Lackovic J. A., Immobilization of inorganic arsenic species using iron, U. S. Patent, 6387276 (2002).
78.Lin D., Gao X., and Yan D., High-capacity high-iron iron battery, European Patent, CN1271186 (2000).
79.Edwards D. A., and Dick V. B., Method for directing groundwater flow and treating groundwater in situ, U. S. Patent, 5975800 (1999).
80.Liskowitz J. J., Kimura T., and Ogata J., In-situ decontamination of subsurface waste using distributed iron powder, U. S. Patent, 5975798 (1999).
81.Murray R. P., Method and apparatus for removing chlorinated contaminants from soil, European Patent, WO9942182 (1999).
82.Hunt S. C., Meiggs T. O., Murdoch L. C., and Slack W. W., Method and system for bioremediation of contaminated soil using inoculated support spheres, European Patent, US5733067 (1998).
83.Chauvin Y., De S. R., and Olivier H., Catalytic compsn. for dimerisation of conjugated di-olefin(s), European Patent, FR2728180 (1996).
84.Ozin G. A., Nazar L. F., and Hugues F., Metal zeolite catalyst preparation, European Patent, US4552855 (1985).
85.Norton R. V., Fisher D. H., Graham G. M., and Frank P. J., Method for preparing high density liquid hydrocarbon fuels, U. S. Patent, 4355194 (1982).
86.Eary L. E., and Rai D., Chromate removal from aqueous wastes by reduction with ferrous ion, Environ. Sci. Technol., 22(8), 972-977 (1988).
87.黃彥文,「聚乙二醇系統製備銀奈米粒子之研究」,碩士論文,國立成功大學化學工程學系研究所(2000)。
88.莊宜靜,「含聚乙二醇和膽固醇側鏈之接枝高分子的合成與性質」,碩士論文,國立台灣科技大學化學工程系研究所(2001)。
89.Longenberger L., and Mills G., Formation of Metal Particles in Aqueous Solutions by Reactions of Metal Complexes with Polymers, J. Phys. Chem., 99(2), 475-478 (1995).
90.台灣同步輻射研究中心,X光粉末繞射及X光吸收光譜暑期訓練課程講義,2000年7月。
91.台灣同步輻射研究中心,X光吸收光譜暑期訓練課程講義,1999年7月。
92.台灣同步輻射研究中心SRRC BL17C光束線暨X光吸收光譜術操作說明書,1999年5月。
93.台灣同步輻射研究中心簡介,2000年。
94.李志甫,X光吸收光譜術在觸媒特性分析上的應用,The Chinese Chem. Soc., 53(3), 280-293(1995).
95.蔡永強,「非彈性X光散射」,物理雙月刊(2004)。
96.Nurmi J. T., Tratnyek P. G., Sarathy V., Baer D. R., Amonette J. E., Pecher K., Wang C., Linehan J. C., Matson D. W., Penn R. L., and Driessen M. D., Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics, Environ. Sci. Technol., 39(5), 1221-1230 (2005).
97.Yang G. C. C., and Lee H. L., Chemical reduction of nitrate by nanosized iron: kinetics and pathways, Water Res., 39(5), 884-894 (2005).
98.Wang C. B., and Zhang W. X., Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs, Environ. Sci. Technol., 31(7), 2154-2156 (1997).
99.Wust W. F., Kober R., Schlicker O., and Dahmke A., Combined zero- and first- order kinetic model of degradation of TCE and cis-TCE with commercial iron, Environ. Sci. Technol., 33(23), 4304-4309 (1999).
100. Orth W. S., and Gillham R. W., Dechlorination of trichloroethene in aqueous solution using Fe0, Environ. Sci. Technol., 30(1), 66-71 (1996).
101. Choe S., Chang Y. Y., Hwang K. Y., and Khim J., Kinetics of reductive denitrification by nanoscale zero-valent iron, Chemosphere, 41(8), 1307-1311 (2000).
102. Huang C. P., Wang H. W., and Chiu P. C., Nitrate reduction by metallic iron, Water Res., 32(8), 2257-2264 (1998).
103. Huang Y. H., and Zhang T. C., Effects of low pH on nitrate reduction by iron powder, Water Res., 38(11), 2631-2642 (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔