|
[1]Iijima S., Helical microtubules of graphitic carbon, Nature, 354(6348), 56-58 (1991). [2]Tong Y., Liu C., Hou P. X., Cheng H. M., Xu N. S. and Chen J., Field emission from aligned multi-walled carbon nanotubes, Physica B, 323(1-4), 156-157 (2002). [3]Dillon A. C., Jones K. M., Bekkedahl T. A., Kiang C. H., Bethune D. S., and Heben M. J., Storage of hydrogen in single-walled carbon nanotubes, Nature, 386(6623), 377-379 (1997). [4]Shea H. R., Martel R., Hertel. T., Schmidt T. and Avouris Ph., Manipulation of carbon nanotubes and properties of nanotube field-effect transistors and rings, J. Microel. Eng., 46, 101-104 (1999). [5]Vigolo B., Pénicaud A., Caulon C., Sauder C., Pailler R., Journet C., Bernier P. and Poulin P., Macroscopic fibers and ribbons of oriented carbon nanotubes, Science, 290(5495), 1331-1334 (2000). [6]Wong S. S., Joselevich E., Wooley A. T., Cheung C. L. and Lieber C. M., Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology, Nature, 394(6688), 52-55 (1998). [7]Saito Y., Nanoparticles and filled nanocapsules, Carbon, 33(7), 979-988 (1995). [8]Guo T., Nikolaev P., Thess A., Colbert D. T. and Smalley R. E., Catalytic growth of single-walled nanotubes by laser vaporization, Chem. Phys. Lett., 243(1-2), 49-54 (1995). [9]Sen R., Govindaraj A. and Rao C. N. R., Carbon nanotubes by the metallocene route, Chem. Phys. Lett., 267(3-4), 276-280 (1997). [10]Jiang Y., Wu Y., Zhang S., Xu C., Yu W., Xie Y. and Qian Y., A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature, J. Am. Chem. Soc., 122(49), 12383-12384 (2000). [11]Hu G., Cheng M., Ma D. and Bao X., Synthesis of carbon nanotube bundles with mesoporous structure by a self-assembly solvothermal route, Chem. Mater., 15(7), 1470-1473 (2003). [12]Lange H., Huczko A., Byszewski P., Mizera E. and Shinohara H., Influence of boron on carbon arc plasma and formation of fullerenes and nanotubes, Chem. Phys. Lett., 289(1-2), 174-180 (1998). [13]Kratschmer W., Lamb L. D., Fostiropouls K. and Huffman R. D., Solid C60:a new form of carbon, Nature, 347(6291), 354-357 (1990). [14]Bethune D. S., Kiang C. H., deVries M. S., Gorman G., Saroy R., Vazguez J. and Beyers R., Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls, Nature, 363(6430), 605-607 (1993). [15]Iijima S. and Ichihashi T., Single-shell carbon nanotubes of 1-nm diameter, Nature, 363(6430), 603-605 (1993). [16]Lau K. T. and Hui D., The revolutionary creation of new advanced materials-carbon nanotube composites, Compos: Part B, 33(4), 263-277 (2002). [17]Dresselhaus M. S., Dresselhaus G. and Saito R., Physics of Carbon Nanotubes, Carbon, 33(7), 883-891 (1995). [18]Mayer A. and Lambin Ph., Quantum-mechanical simulations of field emission from carbon nanotubes, Carbon, 40(3), 429-436 (2002). [19]Kibis O. V., Electronic phenomena in chiral carbon nanotubes in the presence of a magnetic field, Physica E, 12(1-4), 741-744 (2002). [20]Takanori I., Kazume N., Mamoru B. and Masayuki H, First principles calculations for electronic band structure of single-walled carbon nanotube under uniaxial strain, Surf. Sci., 514(1-3), 222-226 (2002). [21]Collins P. G. and Avouris P., Nanotubes for electronics, Sci. Am., December, 38-45 (2000). [22]Treacy M. M. J., Ebbesen T. W. and Gibson J. M., Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature, 381(6584), 678-680 (1996). [23]Poncharal P, Wang Z. L., Ugarte D. and De Heer W. A., Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science, 283(5407), 1513-1516 (1999). [24]Falvo M. R., Clary G. J., Taylor R. M. II, Chi V., Brooks F. P., Washrn S. and Superfine R., Bending and buckling of carbon nanotubes under large strain, Nature, 389(6651), 582-584 (1997). [25]Wong E. W., Sheehan P. E. and Lieber C. M., Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science, 277(5334), 1971-1975 (1997). [26]Yu M. F., Lourie O., Dyer M. J., Moloni K., Kelly T. F. and Ruoff R. S., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 287(5453), 637-640 (2000). [27]Rocheford A., Salahub D. R. and Avouris P., The effect structural distortions on the electronic structure of carbon nanotube, Chem. Phys. Lett., 297(1-2), 45-50 (1998). [28]Dai H., Wong E. W. and Lieber C. M., Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes, Science, 272(5261), 523-526 (1996). [29]Wildoer J. W. G., Venema L. C., Rinzler A. G., Smalley R. E. and Dekker C., Electronic structure of atomically resolved carbon nanotubes, Nature, 391(6662), 59-62 (1998). [30]Tans S. J., Devoret M. H., Dai H. J., Thess A., Smalley R. E., Geerligs L. J. and Dekker C., Individual single-wall carbon nanotubes as quantum wires, Nature, 386(6624), 474-477 (1997). [31]Bockrath M., Cobden D. H., McEuen P. L., Chopra N .G., Zettl A., Thess A. and Smalley R. E., Single-electron transport in ropes of carbon nanotubes, Science, 275(5308), 1922-1925 (1997). [32]Ajiki H. and Ando T., Carbon nanotubes as quantum wires on a cylinder surface, Solid State Commun., 102(2-3), 135-142 (1997). [33]Dai H., Carbon nanotubes: opportunities and challenges, Surf. Sci., 500(1-3), 218-241 (2002). [34]Han J. H., Choi S. H., Lee T. Y., Yoo J. B., Park C. Y., Jeong T. W., Kim H. J., Park Y. J. and Han I. T., Field emission properties of modified carbon nanotubes grown on Fe-coated glass using PECVD with carbon monoxide, Physica B, 323(1-4), 182-183 (2002). [35]http://ipewww.epfl.ch/grbuttet/manips/nanotubes/NTfieldemission1.htm [36]Rao A. M., Jacques D., Haddon R. C., Zhu W., Bower C. and Jin S., In situ-grown carbon nanotube array with excellent field emission characteristics, Appl. Phys. Lett., 76(25), 3813-3815 (2000). [37]Kim J. M., Choi W. B., Lee N. S. and Jung J. E, Field emission from carbon nanotubes for displays, Diamond and related materials, 9(3-6), 1184-1189 (2000). [38]Murakai H., Hirakawa M., Tanaka C. and Yamakawa H., Field emission from well-aligned, patterned, carbon nanotube emitters, Appl. Phys. Lett., 76(13), 1776-1778 (2000). [39]Choi W. B., Chung D. S., Kang J. H., Kim H. Y., Jin Y. W. Han I. T., Lee Y. H., Jung J. E., Lee N. S., Park G. S. and Kim J. M., Fully sealed high-brightness carbon-nanotube field-emission display, Appl. Phys. Lett., 75(20), 3129-3131 (1999). [40]Robertson J., Mechanisms of electron field emission from diamond, diamond-like carbon, and nanostructured carbon, J. Vac. Sci. Technol., B, 17(2), 659-665 (1999). [41]Nakaoka N., Tada K. and Watanabe K., Theory of field evaporation and field emission from carbon nanotubes, Physica B, 323(1-4), 214-215 (2002). [42]Groning O., Kuttel O. M., Emmenegger C. H., Groning P. and Schlapbach L., Field emission properties of carbon nanotubes, J. Vac. Sci. Technol., B, 18(2), 665-678 (2000). [43]Ruoff R. S. and Lorents D. C., Mechanical and thermal properties of carbon nanotubes, Carbon, 33(7), 925-930 (1995). [44]Maruyama S., A molecular dynamics simulation of heat conduction in finite length SWNTs, Physica B, 323(1-4), 193-195 (2002). [45]Hone J., Hone J., Zettl A. and Whitney M., Thermal conductivity of single-walled carbon nanotubes, Synthetic Met., 103(1-3), 2498-2499 (1999). [46]Hone J., Liaguno M. C., Nemes N. M., Johnson A., Fischer J. E., Walters D. A., Casavant M. J., Schmidt J. and Smalley R. E., Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films, Appl. Phys. Lett., 77(5), 666-668 (2000). [47]Yi W., Lu L., Zhang D. L., Pan Z. W. and Xie S. S., Linear specific heat of carbon nanotubes, Phys. Rev. B, 59(14), R9015-R9018 (1999). [48]Berber S., Kwon Y. K. and Toma´nek D., Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett., 84(20), 4613-4616 (2000). [49]Ebbesen T. W., Ajayan P. M., Hiura H. and Tanigaki K, Purification of nanotubes, Nature, 367(6463), 519 (1994). [50]Ebbesen T. W. and Ajayan P. M., Large-scale synthesis of carbon nanotubes, Nature, 358(6383), 220-222 (1992). [51]Lambert J. M., Ajayan P. M., Bernier P., Planeix J. M., Brotons V., Coq B. and Castaing J., Improving conditions towards isolating single-shell carbon nanotubes, Chem. Phys. Lett., 226(1), 364-371 (1994). [52]Subramoney S., Ruoff R. S., Lorents D. C. and Malhotra R., Radial single-layer nanotubes, Nature, 366(6456), 637 (1993). [53]Zhou D., Seraphin S. and Wang S., Single-walled carbon nanotubes growing radially from YC2 particles, Appl. Phys. Lett., 65(12), 1593-1595 (1994). [54]Saito Y., Okuda M., Tomita M. and Hayashi T., Extrusion of single-wall carbon nanotubes via formation of small particles condensed near an arc evaporation source, Chem. Phys. Lett., 236(4-5), 419-426 (1995). [55]Saito Y., Okuda M., Fujimoto N., Yoshikawa T., Tomita M. and Hayashi T, Single-Wall Carbon Nanotubes Growing Radially from Ni Fine Particles Formed by Arc Evaporation, Jpn. J. Appl. Phy., 33(4A), L-526-L-529 (1994). [56]Iijima S., Graphite filaments having tubular structure and method of forming the same, U.S Patent 5830326 (1997). [57]Guo T., Nikolaev P., Thess A., Colbert D.T. and Smalley R. E., Catalytic growth of single-walled nanotubes by laser vaporization, Chem. Phys. Lett., 243(1-2), 49-54 (1995). [58]Guo T., Nikolaev P., Rinzler A. G., TomBnek D., Colbert D. T. and Smalley R. E., Self-Assembly of Tubular Fullerenes, J. Phys. Chem., 99(27), 10694-10697 (1995). [59]Thess A., Lee R., Nikolaev P., Dai H., Petit P., Robert J., Xu C., Lee Y. H., Kim S. G., Rinzler A. G., Colbert D. T., Scuseria G. E., Toma´nek D., Fischer J. E. and Smalley R. E., Crystalline ropes of metallic carbon nanotubes, Science, 273(5274), 483-487 (1996). [60]Yokobson B. I. and Smalley R. E., Fullerene nanotubes: C1000000 and beyond, Am. Sci., 85, 324-326 (1997). [61]Li W. Z., Xie S. S., Qian L. X., ChangB. H., Zou B. S., Zhou W. Y., Zhao R. A. and G. Wang, Large-scale synthesis of aligned carbon nanotubes, Science, 274(5293), 1701-1703 (1996). [62]Nikolaev P., Bronikowski M. J., Bradley R. K., Rohmund F., ColbertD. T., Smith K. A. and Smalley R. E., Gas-phase catalytic growth of single-walled carbon Nanotubes from carbon monoxide, Chem. Phys. Lett., 313(1-2), 91-97 (1999). [63]Lee C. J., Lyu S. C., Cho Y. R., Lee J. H. and Cho K. I., Diameter-controlled growth of carbon nanotubes using thermal chemical vapor deposition, Chem. Phys. Lett., 341(3-4), 245-249 (2001). [64]Fan S., Chaplin M. G., Franklin N. R., Tombler T. W., Cassell A. M. and Dai H., Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science, 283(5401), 512-514 (1999). [65]Ren Z. F., Huang Z. P., Xu J. W., Wang J. H., Bush P., Siegal M. P. and Provencio P. N., Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science, 282(5391), 1105-1107 (1998). [66]Satishkumar B. C., Govindaraj A. and Rao C. N. R., Bundles of aligned carbon nanotubes obtained by the pyrolysis offerrocene–hydrocarbon mixtures: role of the metal nanoparticles produced in situ, Chem. Phys. Lett., 307(3-4), 158-162 (1999). [67]Heer W. A., Châtelain A. and Ugarte D., A carbon nanotube field-emission electron source, Science, 270(5239), 1179-1180 (1995). [68]Rinzler A. G., Hafner J. H., Nicolaev P., Lou L., Kim S. G. and Tomanek D., Unraveling nanotubes: field emission from an atomic wire, Science, 269(6545), 1550-1553 (1995). [69]施漢章,奈米碳管之現況與展望,中興大學工程學刊,13(1), 1-19 (2002)。 [70]Choi W. B., Chung D. S., Kang J. H., Kim H. Y., Jin Y. W., Han I. T., Lee Y. H, Jung J. E., Lee N. S., Park G. S. and Kim J. M., Fully sealed high-brightness carbon-nanotube field-emission display, Appl. Phys. Lett., 75(20), 3129-3131 (1999). [71]Tans S. J., Verschueren A. R. M. and Dekker C., Room-temperature transistor based on a single carbon nanotube, Nature, 393(6680), 49-52 (1998). [72]Jang J W., Lee C. E., Lee T. J., Lee C. J. and Noh S. J., Atomic force microscopy of bamboo-shaped multiwalled carbon nanotube structures, Solid State Comm., 127(1), 29-32 (2003). [73]Hafner J. H., Cheung C. L. and Lieber C. M., Direct Growth of Single-Walled Carbon Nanotube Scanning Probe Microscopy Tips, J. Am. Chem. Soc., 121(41), 9750-9751 (1999). [74]Vigolo B., Pénicaud A., Caulon C., Sauder C., Pailler R., Journet C., Bernier P. and Poulin P., Macroscopic fibers and ribbons of oriented carbon nanotubes, Science, 290(5495), 1331-1334 (2000). [75]Biercuk M. J., Liaguno M. C., Radosavljevic M., Hyun J. K. and Johnson A. T., Carbon nanotube composites for thermal management, Appl. Phys. Lett., 80(15), 2767-2769 (2002). [76]Shaijumon M. M., Ramaprabhu S., Studies of yield and nature of carbon nanostructures synthesized by pyrolysis of ferrocene and hydrogen adsorption studies of carbon nanotubes Int. J. Hydrogen Energ., 30(3), 311-317 (2005). [77]Ci L., Zhu H., Wei B., Xu C., and Wu D., Annealing amorphous carbon nanotubes for their application in hydrogen storage, Appl. Surf. Sci., 205(1-4), 39-43 (2003). [78]Chen X., Zhang Y., Gao X. P., Pan G. L., Jiang X.Y., Qu J. Q., Wu F., Yan J. and Song D. Y., Electrochemical hydrogen storage of carbon nanotubes and carbon nanofibers, Int. J. Hydrogen Energ., 29(7), 743-748 (2004). [79]Takagi H., Hatori H., Soneda Y., Yoshizawa N., and Yamada Y., Adsorptive hydrogen storage in carbon and porous materials, Mat. Sci. Eng. B-solid, 108(1-2), 143-147 (2004). [80]Zheng Q. R., Gu A. Z., Lu X. S., and Lin W. S., Adsorption equilibrium of supercritical hydrogen on multi-walled carbon nanotubes, The Journal of Supercritical Fluids, 34(1), 71-79 (2005). [81]Haluska M., Hirscher M., Becher M., Dettlaff-Weglikowska U., Chen X., and Roth S., Interaction of hydrogen isotopes with carbon nanostructures, Mat. Sci. Eng. B-solid, 108(1-2), 130-133 (2004). [82]Sudan, P.; Züttel, A.; Mauron, Ph.; Emmenegger, Ch.; Wenger, P.; Schlapbach, L.Physisorption of hydrogen in single-walled carbon nanotubes, Carbon, 41(12), 2377-2383 (2003). [83]馬振基,「奈米材料科技原理與應用」,全華出版社 (2003)。 [84]Moreno J. M. C. and Yoshimura M., Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon, J. Am. Chem. Soc., 123(4), 741-742 (2001). [85]Wang X., Lu J., Xie Y., Du G., Guo Q. and Zhang S., A novel route to multiwalled carbon nanotubes and carbon nanorods at low temperature, J. Phys. Chem. B, 106(5), 933-937 (2002). [86]Liu J., Shao M., Chen X., Yu W., Liu X. and Qian Y., Large-scale synthesis of carbon nanotubes by an ethanol thermal reduction process, J. Am. Chem. Soc., 125(27), 8088-8089 (2003). [87]Liu J., Shao M., Tang Q., Zhang S. and Qian Y., Synthesis of carbon nanotubes and nanobelts thorough a medial-reduction method, J. Am. Chem. Soc., 107(20), 6329-6332 (2003). [88]Darkrim F. L., Malbrunot P., and Tartaglia G. P., Review of hydrogen storage by adsorption in carbon nanotubes, Int. J. Hydrogen Energ., 27, 193-202 (2002). [89]Cheng H. M., Yang Q. H., Liu C., Hydrogen storage in carbon nanotubes, Carbon, 39, 1447-1454 (2001). [90]Dresselhaus M. S., Williams K. A., and Eklund P. C., Hydrogen Adsorption in Carbon Materials, MRS Bulletin, 24(11), 45-50 (1999). [91]Brown S. D. M., Dresselhaus G., Dresselhaus M. S., Reversible hydrogen uptake in carbon-based materials. Mater. Restore Soc., 497, 157-163 (1998). [92]Lee S. M., Lee Y. H., Hydrogen storage in single-walled carbon nanotubes, Appl. Phys. Lett., 76(20), 2877-2879(2000) [93]Tada K., Furuya S., and Watanabe K., Ab initio study of hydrogen adsorption to single-walled carbon nanotubes, Phys. Rev. B, 63(15), 155405-155408(2001) [94]Wang Q., Johnson J. K., Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores, J. Chem. Phys., 110(1), 577-586(1999) [95]Rzepka M., Lamp P., and de la Casa-Lillo M.A., Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes, J. Phys. Chem. B, 102(52), 10894-10898(1998) [96]Yin Y. F., Mays T. J., and McEnaney B., Molecular Simulations of Hydrogen Storage in Carbon Nanotube Arrays, Langmuir, 16(26), 10521-10527(2000) [97]Simonyan V. V., Diep P., and Johnson J. K., Molecular simulation of hydrogen adsorption in charged single-walled carbon nanotubes, J. Chem. Phys., 111(21), 9778-9783(1999) [98]Ceacknell R. F., Molecular simulation of hydrogen adsorption in graphitic nanofibres, Phys. Chem. Chemical Phys., 3(33), 2091-2097(2001) [99]Carter T. J., Cornish L. A., Hydrogen in metals, Engr. Failure Anal., 8(2), 113-121(2001) [100]Ahmed S., Kumar R., Krumpelt M., Fuel processing for fuel cell power systems, Fuel Cells Bulletin, 2(12), 4-7(1999) [101]Schaller K. V., Gruber C., Fuel cell drive and high dynamic energy storage systems-Opportunities for the future city bus, Fuel Cells Bulletin, 3(27), 9-13(2000) [102]Babbir F., Gómez, T., Efficiency and economics of proton exchange membrane (PEM) fuel cells, Int. J. Hydrogen Energ., 22(10-11), 1027-1037(1997) [103]Lago R. M., Tsang S. C., Lu K. L., Chen Y. K. and Green M. L. H., Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups, J. Chem. Soc. Chem. Comm., 13, 1355-1356 (1995). [104]Kelley R. J., Pratt S. D., Muthuswamy S., and Pennisi R. W., Gas storage media, containers, and battery employing the media, U. S. Patent, 20050035003 (2005). [105]Jung H. T., Lee S. Y.; Jung D H., Kim B. H., and Ko Y. K., Method for fabricating a biochip using the high density carbon nanotube film or pattern, U. S. Patent, 20050019791 (2005). [106]Imholt T. J., Allara, D., Gnade B., and Roberts, J. A. Process and apparatus for energy storage and release, U. S. Patent, 20050007001 (2005). [107]Silva Sembukutiarachilage R., Haq S., and Boskovic B. O., Production of carbon nanotubes, U. S. Patent, 20040253167 (2004). [108]Kimbara M., Mori, D., Nito T., Toh K.; and Kubo H., Fuel cell system and method of storing hydrogen, U. S. Patent, 20040247959 (2004). [109]Yagi M., Method for storing hydrogen, hydrogen clathrate compound and production method thereof, U. S. Patent, 20040230084 (2004). [110]Kalal P. J., Portable fuel cell system, U. S. Patent, 20040086755 (2004). [111]Goshiki, Keigo, Fluororesin composition, U. S. Patent, 20050159540 (2005). [112]Shatwell, and Alan R., Method and apparatus for the production of carbon nanostructures, U. S. Patent, 20050152826 (2005). [113]Bergqvist R. S., Cooling arrangement, U. S. Patent, 20030232229 (2003). [114]Dodelet J. P., Stansfield B., Smiljanic O., Dellero T., and Desilets S., Process for preparing carbon nanotubes, U. S. Patent, 20030111334 (2003). [115]Poulin P., Vigolo B. P., and A., C. C., Method for obtaining macroscopic fibres and strips from colloidal particles and in particular carbon nanotudes, U. S. Patent, 20030102585 (2003). [116]Iwasaki Y., Operating load control for fuel cell power system fuel cell vehicle, U. S. Patent, 20020162694 (2002). [117]Dillon A. C., Gennett T., and Heben M. J., Single-wall carbon nanotubes for hydrogen storage or superbundle formation, U. S. Patent, 20020150529 (2002). [118]Takanori S., Izuru K., and Mitsuya H., Hydrogen storage tank, U. S. Patent, 20020006365 (2002). [119]Ichiro M., and Hirofumi Y., Multiplex voltage measurement apparatus, U. S. Patent, 20010048307 (2001) [120]Hwang K. C., Efficient cleavage of carbon graphene layers by oxidants, J. Chem. Soc. Chem. Comm., 2, 173-174 (1995). [121]Liu J., Rinzler A. G., Dai H., Hafner J. H., Bradley R. K., Boul P. J., Lu A., Iverson T., Shelimov K., Huffman C. B., Rodriguez-Macias F., Shon Y. S., Lee T. R., Colbert D. T. and Smalley R. E., Fullerene pipes, Science, 280(5367), 1253-1256 (1998). [122]Chen J., Hamon M. A., Hu H., Chen Y., Rao A. M., Eklund P. C. and Haddon R. C., Solution properties of single-walled carbon manotubes, Science, 282(5386), 95-98 (1998). [123]Hamon M. A., Chen J., Hu H., Chen Y., Itkis M. E., Rao A. M., Eklund P. C. and Haddon R. C., Dissolution of single-walled carbon nanotubes, Adv. Mater., 11(10), 834-840 (1999). [124]Wong S. S., Woolley A. T., Joselevich E., Cheung C. L. and Lieber C. M., Covalently-functionalized single-walled carbon nanotube probe tips for chemical force microscopy, J. Am. Chem. Soc., 120(33), 8557-8558 (1998). [125]Riggs J. E., Guo Z., Carroll D. L. and Sun Y. P., Strong luminescence of solubilized carbon Nanotubes, J. Am. Chem. Soc., 122(24), 5879-5880 (1998). [126]Riggs J. E., Guo Z., Carroll D. L. and Sun Y. P., Strong luminescence of solubilized carbon Nanotubes, J. Am. Chem. Soc., 122(24), 5879-5880 (1998). [127]Boul P. J., Liu J., Mickelson E. T., Huffman C. B., Ericson L. M., Chiang I. W., Smith K. A., Colbert D. T., Hauge R. H., Margrave J. L. and Smalley R. E., Reversible Sidewall Functionalization of Buckytubes, Chem. Phys. Lett., 310(3-4), 367-372 (1999). [128]Mickelson E. T., Huffman C. B., Rinzler A. G., Smalley R. E., Hauge R. H., and Margrave J. L., Fluorination of single-wall carbon Nanotubes, Chem. Phys. Lett., 296(1-2), 188-194 (1998). [129]Chen R. J., Zhang Y., Wang D., and Dai, H., Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization, J. Am. Chem. Soc., 123(16), 3838-3839 (2001). [130]Li Y. H., Wang S., Luan Z., Ding J., Xu C., and Wu D., Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes, Carbon, 41(5), 1057-1062 (2003). [131]Li Y. H., Wang S., Wei j., Zhang X., Xu C., Luan Z., Wu D., and Wei B., Lead adsorption on carbon nanotubes, Chem. Phys. Lett., 357(3-4), 263-266 (2002).
|