(3.238.186.43) 您好!臺灣時間:2021/02/25 01:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊鉉台
研究生(外文):Shiuan-Tai Yang
論文名稱:表面改質奈米碳管之合成技術及其提升儲氫能力之研究
論文名稱(外文):Synthesis of Surface-Modification Carbon Nanotube and Its Enhancement of Hydrogen-Storage Capacities
指導教授:林錕松
指導教授(外文):Kuen-Song Lin
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:156
中文關鍵詞:奈米碳管溶劑熱法儲氫吸附表面改質拉曼光譜延伸細微結構X光吸收光譜X光吸收邊緣結構光譜。
外文關鍵詞:Carbon nanotubeSolvothermal methodHydrogen storageAdsorptionSurface modificationRaman spectroscopyEXAFSXANES.
相關次數:
  • 被引用被引用:3
  • 點閱點閱:106
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於奈米碳管(CNTs)之特殊結構,使其具備特異的物理化學性質,尤其在儲氫特性方面,深具研究及實用的潛力。因此,本研究之主要目的為探討最佳多壁CNTs (MWCNTs)合成方法、結構特性鑑定及其儲氫能力。實驗是以溶劑熱法配合使用鉀及鈉金屬為還原劑來合成MWCNTs,經場發掃描式電子顯微鏡(FE-SEM)及穿透式電子顯微鏡(TEM)測試結果為以鉀為還原劑所合成之K-MWCNTs管徑約為30~100 nm,管壁為多層石墨化結構,合成條件為285℃反應12 hr;以鈉為還原劑所合成之Na-MWCNTs管徑約為20~60 nm,管壁為非晶質碳(amorphous carbon)所構成,合成條件為285℃反應20 hr,並可得到碳雜質較少且純度較高之MWCNTs。並以X射線能量散佈分析儀(EDS)、X光粉末繞射儀(XRPD)、拉曼光譜(Raman spectroscopy)、延伸細微結構X光吸收光譜(EXAFS)及X光吸收邊緣結構光譜(XANES)來驗證溶劑熱法合成MWCNTs之反應機構及分析其碳管結構之結晶性。拉曼光譜分析結果顯示K-MWCNTs之G-band強度大於Na-MWCNTs,而D-band的強度大小則相反,顯示K-MWCNTs石墨結晶性較強。XRPD分析結果顯示以溶劑熱法合成之MWCNTs結構結晶性與電弧放電法(arc discharge, AD)或噴霧熱解法(spray pyrolysis, SP)法相異。
為探討MWCNTs經改質處理後對儲氫之能力是否有提昇效果,選擇arc discharge(AD)或apray pyrolysis(SP)合成之MWCNTs及K-MWCNTs或Na-MWCNTs進行比較,並對以上不同製程方法之MWCNTs進行HNO3、KMnO4、及H2O2等改質處理,並添加貴重金屬Pd以及NaAlH4來試圖增加其儲氫量,再以微量天平檢測MWCNTs對H2吸附之效果,接著並以紅外線光譜(FTIR)檢測改質處理後碳管表面結構之變化。結果顯示,經由改質處理過後的奈米碳管,儲存氫氣的效果均有提昇,而經由硝酸處理過後的碳管,其吸附效果最好,吸附量都可以達到0.8 wt%以上;同時也可以發現,經由硝酸改質過後的奈米碳管,在添加了Pd之後,對於氫氣的吸附效果也最好,其儲存氫氣的效果依序為HNO3>KMnO4>H2O2;除此之外,在XRD分析方面,也可以發現到,經過硝酸改質過後的奈米碳管,其晶形強度會消退;此外,Pd在經過分散於碳管上的步驟之後,會發現其晶形改變,也會大量提昇碳管的儲氫效率。而藉由TEM及FE-SEM的觀察,可以發現Pd可以很均勻地分散於碳管之間。為了深入瞭解Pd的精細結構,進一步採用延伸X光吸收光譜及X光吸收邊緣結構(EXAFS/XANES)來分析;顯示經由還原步驟後,PdCl2可以順利地還原成Pd,同時,可以發現Pd-Pd鍵距為2.76±0.02Å,配位數為6±0.25,Pd-Cl鍵距為2.25±0.02Å,配位數為1.8±0.25。此研究顯示Pd分散於碳管上確實可以大量提昇奈米碳管的儲氫效果。
Carbon nanotubes (CNTs) have attracted increasing attention because of their unique structural, mechanical, and electronic properties. Surface chemistry modifications are also useful and critical to manipulate the adsorptive properties of CNTs and develop their potential of hydrogen storage. Therefore, the main objectives of this study were to investigate the optimal synthesis methods or characteristics identification of multiwall CNTs (MWCNTs) and the abilitiy of hydrogen storage in CNTs. Experimentally, the MWCNTs were produced from the catalytic-assembly benzene-thermal routes to MWCNTs by using reduction of hexachlorobenzene by metallic K or Na in the presence of Co/Ni catalyst precursors at moderate temperatures of 503-623 K. The MWCNTs of well-graphited walls were obtained with reductive K metals of catalytic hexachlorobenzene-thermal routes at 558 K for 12 hrs. Similarly, the amorphous MWCNTs with fewer impurities were also formed from the reductive Na metals of hexachlorobenzene-thermal catalytic pathways at lower temperature of 558 K for 12 hrs. The diameters of K-MWCNTs and Na-MWCNTs ranged of 30-100 and 20-60 nm, respectively by using field-emission scanning microscopy (FE-SEM) and transmission electron microscopy (TEM) microphotos. In addition, the reaction mechanisms, fine structures, surface chemical modification or crystalline properties of MWCNTs were further identified by using energy dispersive spectrometer (EDS), X-ray powder diffractometer (XRPD), thermal gravimetric analyzer (TGA), X-ray absorption near edge structural (XANES) or extended X-ray absorption fine structural (EXAFS) spectroscopy. From Raman spectra of MWCNTs, the G-band peak of K-MWCNTs was more intensive than the one of Na-MWCNTs but for the D-band peak of MWCNTs oppositely. They both indicated that the K-MWCNTs had stronger well-graphited structures than Na-MWCNTs. Moreover, the optimal crystalline or surface modification properties of MWCNTs via solvothermal routes compared with arc discharge (AD) or spray pyrolysis (SP) method were observed by XRPD patterns of MWCNTs.
In order to more thoroughly examine the storage efficiencies of hydrogen for different kinds of AD-MWCNTs, SP-MWCNTs, K-MWCNTs or Na-MWCNTs were used for comparison. The chemical modifications of MWCNTs surfaces for adsorption enhancement included HNO3, KMnO4 and H2O2 processes. Moreover, try the additive just as palladium or NaAlH4 to increase the amount of hydrogen adsorbed on CNTs, then use the microbalance to measure the net weight of CNTs after the processes of hydrogen adsorption, and Fourier transform infrared spectroscopy (FTIR) were performed. Experimentally, after the processes of modification, the efficiency of hydrogen storage of CNTs have great improvement, and the CNTs modified by nitric acid improved the most, even over 0.8 wt%. We can also discover that the CNTs modified by nitric acid after adding palladium(Pd) would increase the efficiency of hydrogen storage the most, it was HNO3 > KMnO4 > H2O2modification processes in series. Besides, by the XRD analysis, after the process of nitric acid, the crystalline of CNTs would reduce. By analysis of TEM and FESEM, we found that Pd particles dispersed on CNTs perfectly. In order to understand the fine structures of Pd particles, XANES and EXAFS were used. The Pd particle with a Pd-Pd bond distance of 2.76±0.02Å, and a coordination number of 5.9±0.25 and PdCl2 particles with a Pd-Cl bond distance of 2.25±0.02Å, and a coordination number of 1.8±0.25 were also measured by EXAFS spectroscopy. This study reveal that Pd particles dispersed on CNTs can improve the amount of hydrogen storage successfully.
中文摘要 I
ABSTRACT III
目錄 XVI
圖 目 錄 X
表 目 錄 XVI
第一章 前言 1
第二章 文獻回顧 4
2.1 奈米碳管發展歷史 4
2.2 奈米碳管的結構 6
2.3 奈米碳管的特性 8
2.3.1 機械特性 8
2.3.2 電傳導性 11
2.3.3 場發射性 14
2.3.4 熱性質 18
2.4 奈米碳管之成長方法 21
2.4.1 電弧放電法 21
2.4.2 雷射蒸發法 23
2.4.3 化學氣相沈積法 24
2.4.4 溶劑熱合成法 26
2.5 奈米碳管的應用 30
2.5.1 場發射源的應用 30
2.5.2 微電子元件的應用 33
2.5.3 複合材料中的強化材料 38
2.6 吸附理論 39
2.7 奈米碳管儲氫理論 42
2.7.1 氫 42
2.7.2 氫能源 42
2.7.3 奈米碳管儲氫量估算 45
2.8 儲氫材料的比較 52
2.9 氫燃料電池 57
第三章 實驗方法與分析 60
3.1 實驗藥品 60
3.2 實驗器材 61
3.2.1 微量天平 62
3.2.2 實驗裝置圖 63
3.3 合成奈米碳管 64
3.3.1 以鉀為還原劑 64
3.3.2 以鈉為還原劑 66
3.4 氫氣吸附實驗 69
3.5 分析方法 74
3.5.1 場發掃描式電子顯微鏡 74
3.5.2 穿透式電子顯微鏡 78
3.5.3 X光粉末繞射儀 80
3.5.4 熱重量分析儀 83
3.5.5 比表面積 85
3.5.6 同步輻射吸收光譜 87
3.5.6.1 同步輻射光吸收實驗 87
3.5.7 拉曼光譜分析 92
3.5.8 傅立葉轉換紅外線光譜分析 94
第四章 結果與討論 98
4.1 合成奈米碳管 98
4.1.1 以鉀為還原劑合成奈米碳管 98
4.1.2 以鈉為還原劑合成奈米碳管 105
4.1.3 不同還原劑所合成之奈米碳管結構差異 112
4.2 奈米碳管特性分析 115
4.2.1 奈米碳管拉曼光譜分析 115
4.2.2 奈米碳管XRPD分析 117
4.3 奈米碳管儲氫能力分析 118
4.3.1 奈米碳管之改質處理 118
4.3.2 將Pd分散於奈米碳管中 125
4.3.3 X光吸收邊緣結構性質分析 129
4.3.4 奈米碳管儲氫效果之比較 132
4.3.4.1 SP-MWCNTs氧化處理後對H2吸附效果之比較 132
4.3.4.2 改質後SP-MWCNTs添加Pd對H2吸附效果比較 134
4.3.4.3 AD-MWCNTs氧化處理後對H2吸附效果之比較 137
4.3.4.4 改質後AD-MWCNTs添加Pd對H2吸附效果之比較 138
4.3.4.5 MWCNT添加NaAlH4後對H2吸附效果之比較 139
第五章 結論及未來研究方向 140
5.1 結論 140
5.2 未來研究方向 142
[1]Iijima S., Helical microtubules of graphitic carbon, Nature, 354(6348), 56-58 (1991).
[2]Tong Y., Liu C., Hou P. X., Cheng H. M., Xu N. S. and Chen J., Field emission from aligned multi-walled carbon nanotubes, Physica B, 323(1-4), 156-157 (2002).
[3]Dillon A. C., Jones K. M., Bekkedahl T. A., Kiang C. H., Bethune D. S., and Heben M. J., Storage of hydrogen in single-walled carbon nanotubes, Nature, 386(6623), 377-379 (1997).
[4]Shea H. R., Martel R., Hertel. T., Schmidt T. and Avouris Ph., Manipulation of carbon nanotubes and properties of nanotube field-effect transistors and rings, J. Microel. Eng., 46, 101-104 (1999).
[5]Vigolo B., Pénicaud A., Caulon C., Sauder C., Pailler R., Journet C., Bernier P. and Poulin P., Macroscopic fibers and ribbons of oriented carbon nanotubes, Science, 290(5495), 1331-1334 (2000).
[6]Wong S. S., Joselevich E., Wooley A. T., Cheung C. L. and Lieber C. M., Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology, Nature, 394(6688), 52-55 (1998).
[7]Saito Y., Nanoparticles and filled nanocapsules, Carbon, 33(7), 979-988 (1995).
[8]Guo T., Nikolaev P., Thess A., Colbert D. T. and Smalley R. E., Catalytic growth of single-walled nanotubes by laser vaporization, Chem. Phys. Lett., 243(1-2), 49-54 (1995).
[9]Sen R., Govindaraj A. and Rao C. N. R., Carbon nanotubes by the metallocene route, Chem. Phys. Lett., 267(3-4), 276-280 (1997).
[10]Jiang Y., Wu Y., Zhang S., Xu C., Yu W., Xie Y. and Qian Y., A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature, J. Am. Chem. Soc., 122(49), 12383-12384 (2000).
[11]Hu G., Cheng M., Ma D. and Bao X., Synthesis of carbon nanotube bundles with mesoporous structure by a self-assembly solvothermal route, Chem. Mater., 15(7), 1470-1473 (2003).
[12]Lange H., Huczko A., Byszewski P., Mizera E. and Shinohara H., Influence of boron on carbon arc plasma and formation of fullerenes and nanotubes, Chem. Phys. Lett., 289(1-2), 174-180 (1998).
[13]Kratschmer W., Lamb L. D., Fostiropouls K. and Huffman R. D., Solid C60:a new form of carbon, Nature, 347(6291), 354-357 (1990).
[14]Bethune D. S., Kiang C. H., deVries M. S., Gorman G., Saroy R., Vazguez J. and Beyers R., Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls, Nature, 363(6430), 605-607 (1993).
[15]Iijima S. and Ichihashi T., Single-shell carbon nanotubes of 1-nm diameter, Nature, 363(6430), 603-605 (1993).
[16]Lau K. T. and Hui D., The revolutionary creation of new advanced materials-carbon nanotube composites, Compos: Part B, 33(4), 263-277 (2002).
[17]Dresselhaus M. S., Dresselhaus G. and Saito R., Physics of Carbon Nanotubes, Carbon, 33(7), 883-891 (1995).
[18]Mayer A. and Lambin Ph., Quantum-mechanical simulations of field emission from carbon nanotubes, Carbon, 40(3), 429-436 (2002).
[19]Kibis O. V., Electronic phenomena in chiral carbon nanotubes in the presence of a magnetic field, Physica E, 12(1-4), 741-744 (2002).
[20]Takanori I., Kazume N., Mamoru B. and Masayuki H, First principles calculations for electronic band structure of single-walled carbon nanotube under uniaxial strain, Surf. Sci., 514(1-3), 222-226 (2002).
[21]Collins P. G. and Avouris P., Nanotubes for electronics, Sci. Am., December, 38-45 (2000).
[22]Treacy M. M. J., Ebbesen T. W. and Gibson J. M., Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature, 381(6584), 678-680 (1996).
[23]Poncharal P, Wang Z. L., Ugarte D. and De Heer W. A., Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science, 283(5407), 1513-1516 (1999).
[24]Falvo M. R., Clary G. J., Taylor R. M. II, Chi V., Brooks F. P., Washrn S. and Superfine R., Bending and buckling of carbon nanotubes under large strain, Nature, 389(6651), 582-584 (1997).
[25]Wong E. W., Sheehan P. E. and Lieber C. M., Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science, 277(5334), 1971-1975 (1997).
[26]Yu M. F., Lourie O., Dyer M. J., Moloni K., Kelly T. F. and Ruoff R. S., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 287(5453), 637-640 (2000).
[27]Rocheford A., Salahub D. R. and Avouris P., The effect structural distortions on the electronic structure of carbon nanotube, Chem. Phys. Lett., 297(1-2), 45-50 (1998).
[28]Dai H., Wong E. W. and Lieber C. M., Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes, Science, 272(5261), 523-526 (1996).
[29]Wildoer J. W. G., Venema L. C., Rinzler A. G., Smalley R. E. and Dekker C., Electronic structure of atomically resolved carbon nanotubes, Nature, 391(6662), 59-62 (1998).
[30]Tans S. J., Devoret M. H., Dai H. J., Thess A., Smalley R. E., Geerligs L. J. and Dekker C., Individual single-wall carbon nanotubes as quantum wires, Nature, 386(6624), 474-477 (1997).
[31]Bockrath M., Cobden D. H., McEuen P. L., Chopra N .G., Zettl A., Thess A. and Smalley R. E., Single-electron transport in ropes of carbon nanotubes, Science, 275(5308), 1922-1925 (1997).
[32]Ajiki H. and Ando T., Carbon nanotubes as quantum wires on a cylinder surface, Solid State Commun., 102(2-3), 135-142 (1997).
[33]Dai H., Carbon nanotubes: opportunities and challenges, Surf. Sci., 500(1-3), 218-241 (2002).
[34]Han J. H., Choi S. H., Lee T. Y., Yoo J. B., Park C. Y., Jeong T. W., Kim H. J., Park Y. J. and Han I. T., Field emission properties of modified carbon nanotubes grown on Fe-coated glass using PECVD with carbon monoxide, Physica B, 323(1-4), 182-183 (2002).
[35]http://ipewww.epfl.ch/grbuttet/manips/nanotubes/NTfieldemission1.htm
[36]Rao A. M., Jacques D., Haddon R. C., Zhu W., Bower C. and Jin S., In situ-grown carbon nanotube array with excellent field emission characteristics, Appl. Phys. Lett., 76(25), 3813-3815 (2000).
[37]Kim J. M., Choi W. B., Lee N. S. and Jung J. E, Field emission from carbon nanotubes for displays, Diamond and related materials, 9(3-6), 1184-1189 (2000).
[38]Murakai H., Hirakawa M., Tanaka C. and Yamakawa H., Field emission from well-aligned, patterned, carbon nanotube emitters, Appl. Phys. Lett., 76(13), 1776-1778 (2000).
[39]Choi W. B., Chung D. S., Kang J. H., Kim H. Y., Jin Y. W. Han I. T., Lee Y. H., Jung J. E., Lee N. S., Park G. S. and Kim J. M., Fully sealed high-brightness carbon-nanotube field-emission display, Appl. Phys. Lett., 75(20), 3129-3131 (1999).
[40]Robertson J., Mechanisms of electron field emission from diamond, diamond-like carbon, and nanostructured carbon, J. Vac. Sci. Technol., B, 17(2), 659-665 (1999).
[41]Nakaoka N., Tada K. and Watanabe K., Theory of field evaporation and field emission from carbon nanotubes, Physica B, 323(1-4), 214-215 (2002).
[42]Groning O., Kuttel O. M., Emmenegger C. H., Groning P. and Schlapbach L., Field emission properties of carbon nanotubes, J. Vac. Sci. Technol., B, 18(2), 665-678 (2000).
[43]Ruoff R. S. and Lorents D. C., Mechanical and thermal properties of carbon nanotubes, Carbon, 33(7), 925-930 (1995).
[44]Maruyama S., A molecular dynamics simulation of heat conduction in finite length SWNTs, Physica B, 323(1-4), 193-195 (2002).
[45]Hone J., Hone J., Zettl A. and Whitney M., Thermal conductivity of single-walled carbon nanotubes, Synthetic Met., 103(1-3), 2498-2499 (1999).
[46]Hone J., Liaguno M. C., Nemes N. M., Johnson A., Fischer J. E., Walters D. A., Casavant M. J., Schmidt J. and Smalley R. E., Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films, Appl. Phys. Lett., 77(5), 666-668 (2000).
[47]Yi W., Lu L., Zhang D. L., Pan Z. W. and Xie S. S., Linear specific heat of carbon nanotubes, Phys. Rev. B, 59(14), R9015-R9018 (1999).
[48]Berber S., Kwon Y. K. and Toma´nek D., Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett., 84(20), 4613-4616 (2000).
[49]Ebbesen T. W., Ajayan P. M., Hiura H. and Tanigaki K, Purification of nanotubes, Nature, 367(6463), 519 (1994).
[50]Ebbesen T. W. and Ajayan P. M., Large-scale synthesis of carbon nanotubes, Nature, 358(6383), 220-222 (1992).
[51]Lambert J. M., Ajayan P. M., Bernier P., Planeix J. M., Brotons V., Coq B. and Castaing J., Improving conditions towards isolating single-shell carbon nanotubes, Chem. Phys. Lett., 226(1), 364-371 (1994).
[52]Subramoney S., Ruoff R. S., Lorents D. C. and Malhotra R., Radial single-layer nanotubes, Nature, 366(6456), 637 (1993).
[53]Zhou D., Seraphin S. and Wang S., Single-walled carbon nanotubes growing radially from YC2 particles, Appl. Phys. Lett., 65(12), 1593-1595 (1994).
[54]Saito Y., Okuda M., Tomita M. and Hayashi T., Extrusion of single-wall carbon nanotubes via formation of small particles condensed near an arc evaporation source, Chem. Phys. Lett., 236(4-5), 419-426 (1995).
[55]Saito Y., Okuda M., Fujimoto N., Yoshikawa T., Tomita M. and Hayashi T, Single-Wall Carbon Nanotubes Growing Radially from Ni Fine Particles Formed by Arc Evaporation, Jpn. J. Appl. Phy., 33(4A), L-526-L-529 (1994).
[56]Iijima S., Graphite filaments having tubular structure and method of forming the same, U.S Patent 5830326 (1997).
[57]Guo T., Nikolaev P., Thess A., Colbert D.T. and Smalley R. E., Catalytic growth of single-walled nanotubes by laser vaporization, Chem. Phys. Lett., 243(1-2), 49-54 (1995).
[58]Guo T., Nikolaev P., Rinzler A. G., TomBnek D., Colbert D. T. and Smalley R. E., Self-Assembly of Tubular Fullerenes, J. Phys. Chem., 99(27), 10694-10697 (1995).
[59]Thess A., Lee R., Nikolaev P., Dai H., Petit P., Robert J., Xu C., Lee Y. H., Kim S. G., Rinzler A. G., Colbert D. T., Scuseria G. E., Toma´nek D., Fischer J. E. and Smalley R. E., Crystalline ropes of metallic carbon nanotubes, Science, 273(5274), 483-487 (1996).
[60]Yokobson B. I. and Smalley R. E., Fullerene nanotubes: C1000000 and beyond, Am. Sci., 85, 324-326 (1997).
[61]Li W. Z., Xie S. S., Qian L. X., ChangB. H., Zou B. S., Zhou W. Y., Zhao R. A. and G. Wang, Large-scale synthesis of aligned carbon nanotubes, Science, 274(5293), 1701-1703 (1996).
[62]Nikolaev P., Bronikowski M. J., Bradley R. K., Rohmund F., ColbertD. T., Smith K. A. and Smalley R. E., Gas-phase catalytic growth of single-walled carbon Nanotubes from carbon monoxide, Chem. Phys. Lett., 313(1-2), 91-97 (1999).
[63]Lee C. J., Lyu S. C., Cho Y. R., Lee J. H. and Cho K. I., Diameter-controlled growth of carbon nanotubes using thermal chemical vapor deposition, Chem. Phys. Lett., 341(3-4), 245-249 (2001).
[64]Fan S., Chaplin M. G., Franklin N. R., Tombler T. W., Cassell A. M. and Dai H., Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science, 283(5401), 512-514 (1999).
[65]Ren Z. F., Huang Z. P., Xu J. W., Wang J. H., Bush P., Siegal M. P. and Provencio P. N., Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science, 282(5391), 1105-1107 (1998).
[66]Satishkumar B. C., Govindaraj A. and Rao C. N. R., Bundles of aligned carbon nanotubes obtained by the pyrolysis offerrocene–hydrocarbon mixtures: role of the metal nanoparticles produced in situ, Chem. Phys. Lett., 307(3-4), 158-162 (1999).
[67]Heer W. A., Châtelain A. and Ugarte D., A carbon nanotube field-emission electron source, Science, 270(5239), 1179-1180 (1995).
[68]Rinzler A. G., Hafner J. H., Nicolaev P., Lou L., Kim S. G. and Tomanek D., Unraveling nanotubes: field emission from an atomic wire, Science, 269(6545), 1550-1553 (1995).
[69]施漢章,奈米碳管之現況與展望,中興大學工程學刊,13(1), 1-19 (2002)。
[70]Choi W. B., Chung D. S., Kang J. H., Kim H. Y., Jin Y. W., Han I. T., Lee Y. H, Jung J. E., Lee N. S., Park G. S. and Kim J. M., Fully sealed high-brightness carbon-nanotube field-emission display, Appl. Phys. Lett., 75(20), 3129-3131 (1999).
[71]Tans S. J., Verschueren A. R. M. and Dekker C., Room-temperature transistor based on a single carbon nanotube, Nature, 393(6680), 49-52 (1998).
[72]Jang J W., Lee C. E., Lee T. J., Lee C. J. and Noh S. J., Atomic force microscopy of bamboo-shaped multiwalled carbon nanotube structures, Solid State Comm., 127(1), 29-32 (2003).
[73]Hafner J. H., Cheung C. L. and Lieber C. M., Direct Growth of Single-Walled Carbon Nanotube Scanning Probe Microscopy Tips, J. Am. Chem. Soc., 121(41), 9750-9751 (1999).
[74]Vigolo B., Pénicaud A., Caulon C., Sauder C., Pailler R., Journet C., Bernier P. and Poulin P., Macroscopic fibers and ribbons of oriented carbon nanotubes, Science, 290(5495), 1331-1334 (2000).
[75]Biercuk M. J., Liaguno M. C., Radosavljevic M., Hyun J. K. and Johnson A. T., Carbon nanotube composites for thermal management, Appl. Phys. Lett., 80(15), 2767-2769 (2002).
[76]Shaijumon M. M., Ramaprabhu S., Studies of yield and nature of carbon nanostructures synthesized by pyrolysis of ferrocene and hydrogen adsorption studies of carbon nanotubes Int. J. Hydrogen Energ., 30(3), 311-317 (2005).
[77]Ci L., Zhu H., Wei B., Xu C., and Wu D., Annealing amorphous carbon nanotubes for their application in hydrogen storage, Appl. Surf. Sci., 205(1-4), 39-43 (2003).
[78]Chen X., Zhang Y., Gao X. P., Pan G. L., Jiang X.Y., Qu J. Q., Wu F., Yan J. and Song D. Y., Electrochemical hydrogen storage of carbon nanotubes and carbon nanofibers, Int. J. Hydrogen Energ., 29(7), 743-748 (2004).
[79]Takagi H., Hatori H., Soneda Y., Yoshizawa N., and Yamada Y., Adsorptive hydrogen storage in carbon and porous materials, Mat. Sci. Eng. B-solid, 108(1-2), 143-147 (2004).
[80]Zheng Q. R., Gu A. Z., Lu X. S., and Lin W. S., Adsorption equilibrium of supercritical hydrogen on multi-walled carbon nanotubes, The Journal of Supercritical Fluids, 34(1), 71-79 (2005).
[81]Haluska M., Hirscher M., Becher M., Dettlaff-Weglikowska U., Chen X., and Roth S., Interaction of hydrogen isotopes with carbon nanostructures, Mat. Sci. Eng. B-solid, 108(1-2), 130-133 (2004).
[82]Sudan, P.; Züttel, A.; Mauron, Ph.; Emmenegger, Ch.; Wenger, P.; Schlapbach, L.Physisorption of hydrogen in single-walled carbon nanotubes, Carbon, 41(12), 2377-2383 (2003).
[83]馬振基,「奈米材料科技原理與應用」,全華出版社 (2003)。
[84]Moreno J. M. C. and Yoshimura M., Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon, J. Am. Chem. Soc., 123(4), 741-742 (2001).
[85]Wang X., Lu J., Xie Y., Du G., Guo Q. and Zhang S., A novel route to multiwalled carbon nanotubes and carbon nanorods at low temperature, J. Phys. Chem. B, 106(5), 933-937 (2002).
[86]Liu J., Shao M., Chen X., Yu W., Liu X. and Qian Y., Large-scale synthesis of carbon nanotubes by an ethanol thermal reduction process, J. Am. Chem. Soc., 125(27), 8088-8089 (2003).
[87]Liu J., Shao M., Tang Q., Zhang S. and Qian Y., Synthesis of carbon nanotubes and nanobelts thorough a medial-reduction method, J. Am. Chem. Soc., 107(20), 6329-6332 (2003).
[88]Darkrim F. L., Malbrunot P., and Tartaglia G. P., Review of hydrogen storage by adsorption in carbon nanotubes, Int. J. Hydrogen Energ., 27, 193-202 (2002).
[89]Cheng H. M., Yang Q. H., Liu C., Hydrogen storage in carbon nanotubes, Carbon, 39, 1447-1454 (2001).
[90]Dresselhaus M. S., Williams K. A., and Eklund P. C., Hydrogen Adsorption in Carbon Materials, MRS Bulletin, 24(11), 45-50 (1999).
[91]Brown S. D. M., Dresselhaus G., Dresselhaus M. S., Reversible hydrogen uptake in carbon-based materials. Mater. Restore Soc., 497, 157-163 (1998).
[92]Lee S. M., Lee Y. H., Hydrogen storage in single-walled carbon nanotubes, Appl. Phys. Lett., 76(20), 2877-2879(2000)
[93]Tada K., Furuya S., and Watanabe K., Ab initio study of hydrogen adsorption to single-walled carbon nanotubes, Phys. Rev. B, 63(15), 155405-155408(2001)
[94]Wang Q., Johnson J. K., Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores, J. Chem. Phys., 110(1), 577-586(1999)
[95]Rzepka M., Lamp P., and de la Casa-Lillo M.A., Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes, J. Phys. Chem. B, 102(52), 10894-10898(1998)
[96]Yin Y. F., Mays T. J., and McEnaney B., Molecular Simulations of Hydrogen Storage in Carbon Nanotube Arrays, Langmuir, 16(26), 10521-10527(2000)
[97]Simonyan V. V., Diep P., and Johnson J. K., Molecular simulation of hydrogen adsorption in charged single-walled carbon nanotubes, J. Chem. Phys., 111(21), 9778-9783(1999)
[98]Ceacknell R. F., Molecular simulation of hydrogen adsorption in graphitic nanofibres, Phys. Chem. Chemical Phys., 3(33), 2091-2097(2001)
[99]Carter T. J., Cornish L. A., Hydrogen in metals, Engr. Failure Anal., 8(2), 113-121(2001)
[100]Ahmed S., Kumar R., Krumpelt M., Fuel processing for fuel cell power systems, Fuel Cells Bulletin, 2(12), 4-7(1999)
[101]Schaller K. V., Gruber C., Fuel cell drive and high dynamic energy storage systems-Opportunities for the future city bus, Fuel Cells Bulletin, 3(27), 9-13(2000)
[102]Babbir F., Gómez, T., Efficiency and economics of proton exchange membrane (PEM) fuel cells, Int. J. Hydrogen Energ., 22(10-11), 1027-1037(1997)
[103]Lago R. M., Tsang S. C., Lu K. L., Chen Y. K. and Green M. L. H., Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups, J. Chem. Soc. Chem. Comm., 13, 1355-1356 (1995).
[104]Kelley R. J., Pratt S. D., Muthuswamy S., and Pennisi R. W., Gas storage media, containers, and battery employing the media, U. S. Patent, 20050035003 (2005).
[105]Jung H. T., Lee S. Y.; Jung D H., Kim B. H., and Ko Y. K., Method for fabricating a biochip using the high density carbon nanotube film or pattern, U. S. Patent, 20050019791 (2005).
[106]Imholt T. J., Allara, D., Gnade B., and Roberts, J. A. Process and apparatus for energy storage and release, U. S. Patent, 20050007001 (2005).
[107]Silva Sembukutiarachilage R., Haq S., and Boskovic B. O., Production of carbon nanotubes, U. S. Patent, 20040253167 (2004).
[108]Kimbara M., Mori, D., Nito T., Toh K.; and Kubo H., Fuel cell system and method of storing hydrogen, U. S. Patent, 20040247959 (2004).
[109]Yagi M., Method for storing hydrogen, hydrogen clathrate compound and production method thereof, U. S. Patent, 20040230084 (2004).
[110]Kalal P. J., Portable fuel cell system, U. S. Patent, 20040086755 (2004).
[111]Goshiki, Keigo, Fluororesin composition, U. S. Patent, 20050159540 (2005).
[112]Shatwell, and Alan R., Method and apparatus for the production of carbon nanostructures, U. S. Patent, 20050152826 (2005).
[113]Bergqvist R. S., Cooling arrangement, U. S. Patent, 20030232229 (2003).
[114]Dodelet J. P., Stansfield B., Smiljanic O., Dellero T., and Desilets S., Process for preparing carbon nanotubes, U. S. Patent, 20030111334 (2003).
[115]Poulin P., Vigolo B. P., and A., C. C., Method for obtaining macroscopic fibres and strips from colloidal particles and in particular carbon nanotudes, U. S. Patent, 20030102585 (2003).
[116]Iwasaki Y., Operating load control for fuel cell power system fuel cell vehicle, U. S. Patent, 20020162694 (2002).
[117]Dillon A. C., Gennett T., and Heben M. J., Single-wall carbon nanotubes for hydrogen storage or superbundle formation, U. S. Patent, 20020150529 (2002).
[118]Takanori S., Izuru K., and Mitsuya H., Hydrogen storage tank, U. S. Patent, 20020006365 (2002).
[119]Ichiro M., and Hirofumi Y., Multiplex voltage measurement apparatus, U. S. Patent, 20010048307 (2001)
[120]Hwang K. C., Efficient cleavage of carbon graphene layers by oxidants, J. Chem. Soc. Chem. Comm., 2, 173-174 (1995).
[121]Liu J., Rinzler A. G., Dai H., Hafner J. H., Bradley R. K., Boul P. J., Lu A., Iverson T., Shelimov K., Huffman C. B., Rodriguez-Macias F., Shon Y. S., Lee T. R., Colbert D. T. and Smalley R. E., Fullerene pipes, Science, 280(5367), 1253-1256 (1998).
[122]Chen J., Hamon M. A., Hu H., Chen Y., Rao A. M., Eklund P. C. and Haddon R. C., Solution properties of single-walled carbon manotubes, Science, 282(5386), 95-98 (1998).
[123]Hamon M. A., Chen J., Hu H., Chen Y., Itkis M. E., Rao A. M., Eklund P. C. and Haddon R. C., Dissolution of single-walled carbon nanotubes, Adv. Mater., 11(10), 834-840 (1999).
[124]Wong S. S., Woolley A. T., Joselevich E., Cheung C. L. and Lieber C. M., Covalently-functionalized single-walled carbon nanotube probe tips for chemical force microscopy, J. Am. Chem. Soc., 120(33), 8557-8558 (1998).
[125]Riggs J. E., Guo Z., Carroll D. L. and Sun Y. P., Strong luminescence of solubilized carbon Nanotubes, J. Am. Chem. Soc., 122(24), 5879-5880 (1998).
[126]Riggs J. E., Guo Z., Carroll D. L. and Sun Y. P., Strong luminescence of solubilized carbon Nanotubes, J. Am. Chem. Soc., 122(24), 5879-5880 (1998).
[127]Boul P. J., Liu J., Mickelson E. T., Huffman C. B., Ericson L. M., Chiang I. W., Smith K. A., Colbert D. T., Hauge R. H.,
Margrave J. L. and Smalley R. E., Reversible Sidewall Functionalization of Buckytubes, Chem. Phys. Lett., 310(3-4), 367-372 (1999).
[128]Mickelson E. T., Huffman C. B., Rinzler A. G., Smalley R. E., Hauge R. H., and Margrave J. L., Fluorination of single-wall carbon Nanotubes, Chem. Phys. Lett., 296(1-2), 188-194 (1998).
[129]Chen R. J., Zhang Y., Wang D., and Dai, H., Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization, J. Am. Chem. Soc., 123(16), 3838-3839 (2001).
[130]Li Y. H., Wang S., Luan Z., Ding J., Xu C., and Wu D., Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes, Carbon, 41(5), 1057-1062 (2003).
[131]Li Y. H., Wang S., Wei j., Zhang X., Xu C., Luan Z., Wu D., and Wei B., Lead adsorption on carbon nanotubes, Chem. Phys. Lett., 357(3-4), 263-266 (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔