(3.232.129.123) 您好!臺灣時間:2021/03/06 01:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳昱輝
研究生(外文):Yu-Hui Wu
論文名稱:低壓扁平焰法合成奈米結構之金屬氧化物粉體
論文名稱(外文):Low Pressure Flat Flame Synthesis of Nanostructured Metal Oxides Particles
指導教授:張幼珍
指導教授(外文):Yu-Chen Chang
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:120
中文關鍵詞:低壓扁平焰金屬氧化物火焰溫度
外文關鍵詞:Low pressure flat flameMetal oxidesFlame temperatureFluent
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的主要目的是利用兩種不同的先趨物輸送系統結合低壓扁平焰技術,建構一個完整的微米─奈米粉體製程的反應器系統,進行特用性粉體的製備及系統參數的實驗,並藉由計算流體力學(CFD)軟體(FLUENT),輔助觀察反應器系統中流場與溫度分布的變化。

在模擬方面,系統模型是一低壓環境下扁平火焰反應器,參考實際反應器系統建立一個二維圓柱座標的模擬系統幾何圖形及網格。藉由理論模擬的計算,改變燃氣進料流量、控制操作壓力與各系統邊界條件的設定,輔助觀察扁平火焰的燃燒狀態、火焰結構與溫度分佈情形等。

在實驗方面,首先針對不同的燃燒條件,甲烷過量、完全燃燒、及氧氣過量,在不同的操作壓力下進行火焰溫度的量測,總流量、燃燒條件與操作壓力的變化直接影響粉體合成的性質,實驗結果顯示,在相同壓力下,不同的燃燒條件火焰平均溫度是甲烷過量>完全燃燒>氧氣過量;而在相同燃燒條件下,以在壓力為50 torr下的平均火焰溫度最高。在粉體製備方面,由超音波霧化器產生之溶液先趨物,由FE-SEM與TEM觀察結果顯示,其粒徑大小在次微米到微米之間,多數粉體的形狀較接近球型,且分散性良好;另一方面由Bubbler產生之蒸氣先趨物,由FE-SEM與TEM觀察結果顯示,其粒徑大小在奈米尺度。
The objectives of this study are two-folds: (1) develop a computational fluid dynamics (CFD) model for a low-pressure flat flame reactor and (2) the synthesis of nanostructured metal oxides particles using the low-pressure flat flame technique. A 2-dimensional CFD model was developed using the commercial CFD package FLUENT with the aim to assist in the investigation of flow behaviors and temperature distribution inside the reactor system. Parameters to be investigated in numerical experiments include fuel gas flow rate, chamber pressure, and boundary condition applied. Flame characteristics as well as temperature distribution will be studied.
To validate the model, experimental measurement of flame temperature profiles at different combustion conditions (excess CH4, complete combustion, and excess O2) and operating pressures were performed. It was found that fuel/gas flow rate, combustion condition, and operating pressure influence the characteristics of the synthesized powders significantly. The average flame temperature was found to follow the relation: excess CH4>complete combustion>excess O2 at all three pressure conditions. At the same combustion condition, the highest achievable flame temperature occurs at 50 torr.
FE-SEM and TEM results showed that most particles are with sizes in micrometer to submicrometer size range and that majority of particles obtained were spherical except for iron oxide and magnesium oxide.
TABLE OF CONTENTS

Page
Title Page
Letter of Thesis Oral Examination
Letter of Authority
Chinese Abstract.……………………………………………………….. Ⅰ
English Abstract………..……………...……………………………….. Ⅱ
Acknowledgement.…….…………………………………………….…. Ⅳ
Table of Contents……….….…………………………………………… Ⅴ
List of Tables..………………………………………………………….. Ⅸ
Table of Figures..……………………………………………………….. Ⅹ
Table of Symbols...………...…………………………………………… ⅩⅥ
Chapter 1 Introduction………………………………………………….. 1
1.1 Preface..…………………………………………………….. 1
1.2 Motivation of This Study…………………………………... 2
Chapter 2 Literature Review……………………………………….…... 3
2.0 Introduction……………………………….………………... 3
2.1 Flame Aerosol Reactor…………………………..……..….. 3
2.1.1 Diffusional Flame……….……………….….….….. 4
2.1.1.1 Characteristic of Diffusion Flame………… 4
2.1.1.2 Theory of Diffusional Flame……………... 5
2.1.1.3 Types of Diffusion Flame………………… 6
2.1.1.3-1 Coflow Diffusion flame………... 6
2.1.1.3-2 Counterflow Diffusion Flame….. 8
2.1.1.4 Electrically-assisted Diffusional Flame…... 9
2.1.2 Premixed Flame……………………………………. 11
2.1.2.1 Characteristics of Premixed Flames………. 11
2.1.2.2 Theory of Premixed Flame……………….. 13
2.1.2.3 Types of Premixed Flame………………… 14
2.1.2.3-1 Flat flame………………………. 14
2.1.2.3-2 Low-Pressure Flat flame………. 16
2.1.2.3-3 Electrically-assisted Premixed Flame…………………………... 18
2.2 Flame Synthesis of Metallic Oxide Nanoparticles.………… 21
2.2.1 Flame synthesis of Al2O3…………………………... 21
2.2.2 Flame synthesis of SiO2…………..………………... 23
2.2.3 Flame synthesis of TiO2………..…………………... 26
2.2.4 Flame synthesis of ZrO2………………..…………... 28
2.2.5 Flame synthesis of ZnO………………..…………... 29
2.3 Flame Synthesis of Multi-Metallic Oxide Nanoparticles….. 30
Chapter 3 Simulation………………..………………………………….. 34
3.0 Simulation System………………..………………………... 34
3.1 Governing Equations……..………………………………... 34
3.1.1 Continuous Phase…………………………………... 34
3.1.2 Compressible Flows………………………………... 35
3.1.3 Mass and Thermal Energies………………………... 35
3.2 Basic Assumptions of the Simulation System……………... 36
3.3 Simulation Methods and Conditions………………………. 37
Chapter 4 Experimental….……………………………………….……. 41
4.1 Precursor Preparations………...…………………………… 48
4.2 Experimental Chemicals and Equipments…………………. 51
4.3 Experimental Operation Procedure………………………... 52
Chapter 5 Results and Discussions..……………………………………. 53
5.1 Simulation Results.………………………………………… 53
5.2 Theoretical Calculation of the Adiabatic Flame Temperature at Different Flame Conditions……………….. 53
5.3 Flame Observation for Different Pressure and Fuel/Oxidant Ratio……………………………………………………….. 54
5.4 Measurement of Flame Temperature………………………. 57
5.4.1 Temperature Profile at 50 torr………….…………... 57
5.4.2 Temperature Profile at 100 torr…………………...... 57
5.4.3 Temperature Profile at 150 torr……………….……. 61
5.4.4 Effect of Operating Pressure………….………..…... 61
5.5 Particle Synthesis and Characterization…………………… 64
5.6 Synthesis of Aluminum Oxide……………………………. 66
5.6.1 EDX Analysis………………………………….…... 66
5.6.2 XRD Analysis…………………………………….... 66
5.6.3 FE-SEM Micrographs………………………….…... 66
5.6.4 TEM Micrographs………………………………...... 67
5.7 Synthesis of Zirconium Oxide………………..……………. 73
5.7.1 EDX Analysis……………………...…………..…... 73
5.7.2 XRD Analysis…………………………………….... 73
5.7.3 SEM Micrographs………………………….….…… 73
5.7.4 FE-SEM Micrographs……………………………… 74
5.7.5 TEM Micrographs………………………………...... 74
5.8 Synthesis of Zirconium oxide from 15 nm ZrO2 Sol……… 78
5.8.1 SEM and FE-SEM……………………………..…... 78
5.8.2 TEM…………….………………………………...... 78
5.9 Synthesis of Magnesium oxide……………………………. 81
5.9.1 EDX Analysis………………………...………..…... 81
5.9.2 XRD Analysis…………………………………….... 81
5.9.3 FE-SEM…………….………………………….…... 82
5.9.4 TEM Analysis…..………………………………...... 82
5.10 Synthesis of Iron Oxide……………………………………. 87
5.10.1 EDX Analysis……………………...…………..…... 87
5.10.2 XRD Analysis…………………………………….... 87
5.10.3 FE-SEM Micrographs………………………….…... 88
5.10.4 TEM Micrographs………………………………...... 88
5.11 Synthesis of Zinc Oxide…………………………………… 93
5.11.1 EDX Analysis……………………………………… 93
5.11.2 FE-SEM Micrographs…………………………….... 93
5.113 TEM Micrographs…..………………………….…... 93
5.12 Synthesis of YAG…………….……………………………. 93
5.12.1 EDX Analysis……………………………...…..…... 98
5.12.2 XRD Analysis…………………………………….... 98
5.12.3 FE-SEM Micrographs…………………….….…..… 98
5.12.4 TEM Micrographs………………………………...... 98
5.13 Synthesis of Silicon oxide…………………………………. 102
5.13.1 EDX Analysis……………………...…………..…... 102
5.13.2 FT-IR Analysis…………………………………….. 102
5.13.3 XRD Analysis…………………………………….... 102
5.13.4 FE-SEM Micrographs………………………….…... 102
5.13.5 TEM Micrographs………………………………...... 103
5.14 Synthesis of Titanium suboxides………………………...… 106
5.14.1 EDX Analysis……………………...…………..…... 106
5.14.2 XRD Analysis…………………………………….... 106
5.14.3 FE-SEM Micrographs………………………….…... 106
5.14.4 TEM Micrographs………………………………...... 106
Chapter 6 Conclusions……………………………………………….…. 110
Reference…………………………………………………………….…. 112
REFERENCES

1.Ahn, K.H.; Sohn, S.H.; Jung, C.H.; Choi, M., “In situ measurement of nano particle size distribution and charge characteristics in H2/O2/TEOS diffusion flame,” Scripta mater 2001, 44, 1889-1892.
2.Briesen, H.; Fuhrmann, A.; Pratsinis, S.E., ”The effect of precursor in flame synthesis of SiO2,” Chemical Engineering Science, 53, NO.24, 4105-4112 (1998)
3.Burke, S.P.; Schumann, T.E.W.; “Diffusion flames,” Industrial and Engineering Chemistry, 20, 998-1004 (1928).
4.Buchanan, R.K.; Grose, P.J.; Gani, M.S.J., “Ultrafine mixed oxidepowders prepared in an oxy-acetylene flame,” In Poceedings of the Australian Ceramic Conference 9th, Aust. Ceram. 80, Sydney, Australia, 102-104 (1980).
5.Chang, C.C., “Process development of low pressure flat flame for nanoparticle production: simulation and experiment,” Department of Chemical Engineering, Yuan Ze University, Master thesis (2002)
6.Chu, C.W., “Preparation of highly-dispersed nanoparticle via low pressure flat flame-spray pyrolysis process,” Department of Chemical Engineering, Yuan Ze University, Master thesis (2003)
7.Chung, S.L.; Katz, J.L., “The counterflow diffusion flame burner a new tool for the study of the nucleation of refractory compounds,” Combustion and Flame, 61(3), 271-284 (1985)
8.Chung, S.L., Tsai, M.S.; Lin, H.D., “Formation of particles in a H2-O2 counterflow diffusion flame doped with SiH4 or SiCl4,” Combustion and Flame, 85, 134-142 (1991)
9.Colibaba-Evulet; Shukla, A.V.; Glumac, N.G.; Kear, B.; Cosandey, F., “ Parametric study of zirconia nanoparticle synthesis in low pressure flames,” Scripta Materialia, 44, 2259-2262 (2001)
10.Coward, H.F.; Jones, G.W., ”Limits of Flammability of Gases and Vapors,” US Government Printing office, Washington DC. (1952)
11.Ehrman, S.H., Friedlander, S.K.; Zachariah, M.R., “Characteristics of SiO2/TiO2 nanocomposite particles formed in a premixed flat flame,” Journal of Aerosol Science, 29, NO.5/6, 687-706 (1998)
12.Formenti, M., Juillet, F.; Meriaudeau, P.; Teiechner, S.J.; Vergnon, P., “Preparation in a hydrogen-oxygen flame of ultrafine metal oxide particles. Oxidative properties toward hydrocarbons in the presence of ultraviplet radiation,” Journal of Colloid and Interface Science, 39(1), 79-89 (1972)
13.Fristrom, R.M., Flame Structure and Process, Oxford University Press, New York (1995)
14.Ganguli, D.; Chartterjee, M., Ceramic Powder Preparation: A Handbook, Kluwer Academic Publishers, Dordrecht (1997)
15.Gaydon, A.G.; Wolfhard, H.G., Flames, Chapman & Hall LTD, London (1953)
16.Glumac, N.G.; Goodwin, D.G.; “Large-area diamond film growth in a low-pressure flame,” Materials Letters, 18(3), 119-122 (1993)
17.Hinds, W.C., Aerosol Technology, John Wiley & Sons, New York (1999)
18.Jensen, J.R.; Johannessen T.; Livbjerg H., ”Synthesis of nano-particles of ZnO/Al2O3 in a premixed flame,” Journal of Aerosol Science, 31, suppl.1, 216 (2000)
19.Jiang, Y.X., “ Process development of flame method for synthesis of silicon dioxide nanoparticle,” Department of Chemical Engineering, National Cheng Kung University, Master thesis (2000)
20.Jost, W., Explosion and Combustion Processes in Gases, McGraw-Hill, New York (1946)
21.Kammler, H.K.; Pratsinis, S.E., “Electrically-assisted flame aerosol synthesis of fumed silica at high production rates,” Chemical Engineering and Processing, 39, 219-227 (2000)
22.Kang, Y.C.; Seo, D.J.; Park, S.B.; Park, H.D., “Direct synthesis of strontium titanate phosphor particles with high luminescence by flame spray pyrolysis,” Material Research Bulletin, 37, 263-269 (2002)
23.Kang, Y.C.; Sohn, J.R.; Yoon, H.S.; Jung, K.Y.; Park, H.D., “Improved photoluminescence of Sr5(PO4)3Cl:Eu2+ phosphor particles prepared by flame spray pyrolysis,” Journal of The Electrochemical Society, 150(2), H38-H42 (2003)
24.Katz, J.L.; Hung, C.H., Twenty-third Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1733 (1990)
25.Kammler, H.K.; Pratsinis, S.E.; Morrison, P.W.; Hemmerling, B., “Flame temperature measurements during electrically assisted aerosol synthesis of nanoparticles,” Combustion and Flame, 128, 369-381 (2002)
26.Koda, S.; Fujiwara, O., “A study of inhibition effects for silane combustion by additive gases,” Combustion and Flame, 73, 187-194 (1988)
27.Lewis, B.; Elbe, G.V., “Combustion, Flame and Explosions of Gases,” Academic Press, INC. Third Edition (1987)
28.Lindackers, D.; Strecker, M.G.D.; Roth, P.; Janzen, C.; Pratsinis, S.E., “Formation and growth of SiO2 particles in low pressure H2/O2/Ar flames doped with SiH4,” Combustion science and Technology, 123, 287-315 (1997)
29.Marchal, J.; John, T.; Baranwal, R.; Hinklin, T.; Laine, R.M., “Yttrium aluminum garnet nanoparticles produced by liquid-feed flame spray pyrolysis (LF-FSP) of metalloorganic precursors,” Chemistry of Materials, 16, NO.5, 822-831 (2004)
30.Matsoukas, T.; Friedlander, S.K., “Dynamics of aerosol agglomerate formation,” Journal of Colloid and Interface Science, 146(2), 495-506 (1991)
31.O’Regan, B.; Gratzel, M., “A low-cost, high efficiency solar cell based upon dye-sensitized colloidal TiO2 films,” Nature, 353, 737-740 (1991)
32.Polley, T.A.; Catrer, W.B.; Poker, D.B., “Deposition of zinc oxide thin film by combustion CVD,” Thin Solid Films, 357, 132-136 (1999)
33.Pratsinis, S.E.; Zhu, W.; Vemury, S., “The role of gas mixing in flame synthesis of titania powder,” Powder Technology, 86, 87-93 (1996)
34.Pratsinis, S.E., “Flame aerosol synthesis of ceramic powder,” Progress in Energy and Combustion Science, 24, 197-219 (1998)
35.Sextl, G.; Swarowsky, H.; Koerfer, M.; Kleinschmidt, P.; Schwartz, R., Ger. Offen. DE4,009,299 (Cl. C01F/30) (1990)
36.Skandan, G.; Chen, Y.J.; Glumac, N.; Kear, B.H., ”Synthesis of oxide nanoparticles in low pressure flame,” NanoStructured Materials, 11, NO. 2, 149-158 (1999)
37.Sokolowski, M.; Sokolowska, A.; Michalski, A.; Gokieli, B., “The ‘in-flame-reaction’ method for Al2O3 aerosol formation,” Journal of Aerosol Science, 8(4), 219-225 (1977)
38.Tani, T.; Madler, L.; Pratsinis, S.E., “Homogeneous ZnO nanoparticles by flame spray pyrolysis,” Journal of Nanoparticle Research, 4, NO.4, 337-347 (2002)
39.Toong, T.Y., Combustion Dynamics, McGraw-Hill, New York (1983)
40.Ulrich, G.D., “Theory of Particle Formation and Growth in Oxide
Synthesis Flames,” Combustion Science and Technology, 4, 47-57 (1971)
41.Ulrich, G.D.; Riehl, J.W., “Aggregation and growth of submicron oxide particles in flame,” Journal of Colloid and Interface Science, 87, NO. 1 (1982)
42.Vemury, S.; Pratsinis, S.E., “Corona-assisted flame synthesis of Ultrafine titania particles,” Applied Physics Letters, 66(24), 3275-3277 (1995)
43.Vemury, S.; Pratsinis, S.E., “Charging and coagulation during flame synthesis of silica,” Journal of Aerosol Science, 27, NO.6, 951-966 (1996)
44.Wang, Z.M.; Yang, G.; Biswas, P.; Bresser, W.; Boolchand, P., “Processing of iron-doped titania powders in flame aerosol reactor,” Powder Technology, 114, 197-204 (2001)
45.Williams, F.A., Combustion Theory, second edition (1985)
46.Xing, Y.; Koylu, U.O.; Rosner, D.E., “Synthesis and restructuring of inorganic nano-particles in counterflow diffusion flames,” Combustion and Flame, 107, 85-102 (1996)
47.Zachariah, M.R.; Chin, D.; Semerjian, H.G.; Katz, J.L., “Silica particle synthesis in a counterflow diffusion flame reactor,” Combustion and Flame, 78, 287-298 (1989)
48.Zachariah, M.R.; Huzarewicz, S., “Aerosol processing of YBaCuO superconductors in a flame reactor,” Journal of Materials Research, 6, No. 2, 264-269 (1991)
49.Zhao, E., “Gas-phase combustion synthesis of nano-particles of silicon compounds with HMDSA and HMDSO in the premixed propane flame,” Department of Mechanical Engineering, National Taiwan University, Doctoral Dissertation (2003)
50.坂野久夫,新陶瓷學,(葉思武),復文,民國八十一年。
51.高濂,李蔚,奈米陶瓷,台北,五南,民國九十二年。
52.黃榮茂,王禹文,林聖富,揚得仁,化學化工百科辭典,台北,曉園,民國76年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔