(3.239.33.139) 您好!臺灣時間:2021/03/02 16:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭建邦
研究生(外文):Chien-Pang Cheng
論文名稱:PBI及PBI-BS合成與PBI薄膜製備
論文名稱(外文):Syntheses of polybenzimidazole and polybenzimidazole-butanesulfonic acid and preparation of polybenzimidazole membrane
指導教授:林秀麗林秀麗引用關係
指導教授(外文):Hsiu-Li Lin
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:78
中文關鍵詞:PBIPBI薄膜PBI-BS
外文關鍵詞:PBIPBI membranePBI-BS
相關次數:
  • 被引用被引用:2
  • 點閱點閱:197
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究目的是合成PBI與PBI-BS,並且將PBI加以製成薄膜應用於燃料電池上。我們利用元素分析、1H-NMR、13C-NMR及FTIR來鑑定PBI與PBI-BS。我們將不同LiCl/PBI比例的溶液注型成膜:將2 wt%的PBI溶液裝在不鏽鋼容器中成膜(方法I)或是使用刮刀將8 wt%的PBI溶液塗佈到玻璃板上成膜(方法II)並且控制膜厚。
從SEM的觀察發現,方法II製備之薄膜的表面會比方法I製備的薄膜平整。在含酸率與導電度的測量方面,方法II製備之薄膜都會比方法I製備之薄膜高。而且PPII-7.2及 PPII-10.8的導電度可以比Nafion 117還高。將PPII-7.2膜製作成MEA於質子交換膜燃料電池測試,陽極及陰極的Pt loading量分別為1 mg/cm2、0.5 mg/cm2,而氧氣進料為200 ml/min,氫氣進料為200 ml/min,在70℃下得到電池的最大功率為100 mW/cm2,開路電位(OCV)為0.83 V。
我們總結出製備PBI膜的適合條件:
(1)LiCl/PBI的莫爾比須小於10.8。
(2)方法II為較佳的製膜方法。
In this study, polybenzimidazole (PBI) and polybenzimidazole sulfonic acid (PBI-BS) were synthesized. The PBI membranes prepared for evaluation. PBI and PBI-BS were identified by element analysis, 1H-NMR, 13C-NMR, and FTIR spectroscopy. The membranes were prepared by casting the varied LiCl/PBI solution on a stainless steel cell in 2 wt% (Method I) or on a glass plate in 8 wt% (Method II) using spacer to control the thickness.
From the observation of SEM, the surfaces of the membranes prepared by Method II are smoother than those prepared by Method I. Results show acid doping level and proton conductivities of acid doped PBI membranes prepared by Method II are higher than those prepared by Method I. Proton conductivities of PPII-7.2 and PPII-10.8 are even higher than those of Nafion 117. MEA was prepared by membrane of PPII-7.2 for PEMFC test. The Pt loading were 1 mg/cm2 and 0.5 mg/cm2 at cathode, anode, respectively. At 200 ml/min of oxygen, 200 ml/min of hydrogen, and 70℃, the maximum power density of 100 mW/cm2 and the open circuit potential(OCV)of 0.83 V were obtained.
In conclusion, the conditions which are suitable for the preparation of PBI membranes are:
(1)The molar ratios of LiCl and PBI should be less than 10.8,
(2)The Method II is better for the membranes preparation.
中文摘要……………………………………………………………………..I
英文摘要……………………………………………………………………..II
目錄...................................................IV
圖目錄.................................................VII
表目錄..................................................IX

第一章 序論.............................................1
1.1 前言……………....................................1
1.2 燃料電池簡介…....................................2
1.2.1 發電原理及構造.....................................2
1.2.2 燃料電池的分類與優缺點…………………………………………...4
1.3 質子交換膜簡介………………………………................6
1.4 聚苯咪唑(Polybenzimidazole,PBI)簡介...............8
1.4.1 PBI的合成……………………………………………………………9
1.4.2 PBI在燃料電池上的應用…………………………………………..10
1.5 PBI的磺酸化與PBI-BS的合成………………………………………11
1.6 研究目的………………………………………………………………12

第二章 實驗...........................................13
2.1 實驗架構………………………………………………………………13
2.2 藥品.............................................14
2.3 儀器設備.........................................15
2.4 實驗步驟.........................................17
2.4.1 PBI的合成及鑑定.................................17
2.4.2 PBI-BS 的合成及鑑定..............................18
2.4.3 PBI薄膜製備及性質測試…………………………………………20
2.5 交流阻抗法(AC impedance)..........................27
2.5.1 AC impedance的技術應用...........................27
2.5.2 交流阻抗操作原理..................................27
2.5.3 等效電路元件.....................................30
2.5.4 交流阻抗圖譜分析.................................33

第三章 結果與討論......................................35
3.1 PBI結構鑑定.......................................35
3.1.1 PBI的霍式紅外光譜儀(FTIR)分析...................35
3.1.2 PBI的固態核磁共振光譜儀(S-NMR)分析..............36
3.2 PBI-BS的結構鑑定...............................38
3.2.1 PBI-BS的FTIR光譜................................38
3.2.2 PBI-BS的核磁共振光譜儀(NMR)分析.................40
3.2.3 PBI-BS溶解度測試…………………………………………………43
3.2.4 PBI-BS的元素分析結果………...………………………………….43
3.2.5 示差掃描分析儀(DSC)結果……………………………………….44
3.2.6 熱重分析(TGA)…………………………………………….………46
3.3 PBI薄膜的性質測試....................................47
3.3.1 SEM 觀察膜材表面………………………………………………...47
3.3.2 氣體滲透測試……………………………...………………………..66
3.3.3 含酸率測量………………………………………………………….67
3.3.4 導電度測量………………………………………………………….68
3.3.5 單電池測試………………………………………………………….72


第四章 結論……………………………………………………………….73
4.1 PBI-BS合成…………………………………………………………...73
4.2 PBI 薄膜製備…………………………………………………………73
第五章 參考文獻………………………………………………………….76
1.Asensio J. A., Borrós S., and Pedro G. R., “Proton-conducting polymers based on benzimidazoles and sulfonated benzimidezoles”, Journal of Polymer Science: Part A: Polymer Chemistry, 40, 3703-3710 (2002)
2.Bae J. M., Honma I., Murata M., Yamamoto T., Rikukawa M., and Ogata N., “Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells”, Solid State Ionics, 147, 189-194(2002)
3.Brinker K. C. and Robinson I. M., “Polybenzimidazoles”, U.S. Pat. 2,895,948 (1959)
4.Camaioni N., Casalbore-Miceli G., and Martelli A., “A novel solid state battery based on a polymer proton conductor: Poly(propargyl alcohol) doped with perchloric acid”, Journal of Applied Electrochemistry, 27, 862-866 (1997)
5.Dudgeon C. D. and Vogl O., “Bisorthoesters as polymer intermediates, II. A facile method for the preparation of polybenzimidazoles”, J. Polym. Sci. Polym. Chem. Ed., 16, 1831-1852 (1978)
6.Foster R. T. and Marvel C. S., “Polybenzimidazoles IV. Polybenzimidazoles containing aryl ether linkages”, J. Polym. Sci. A, 3, 417-421 (1965)
7.Gieselman M. B., and Reynolds J. R., “Water soluble polybenzimidazole-based polyelectrolytes”, Macromolecules, 25, 4832-4834(1992)
8.Glipa X., Haddad M. E., Jones D. J., and Roziere J., “Synthesis and characterization of sulfonated polybenzimidazole: a highly conducting proton exchange polymer”, Solid State Ionics, 97, 323-331 (1997)
9.Grobelny J., Rice D. M., Karasz F. E., and MacKnight W. J., “High-resolution solid-state carbon-13 nuclear magnetic resonance study of polybenzimidazole/polyimide blends”, Macromolecules, 23, 2139-2144 (1990)
10.Grot W., “Use of perfluorosulfonic acid products as separators in electrolytic cells”, Chem. Ing. Tech., 50, 299-301 (1978)
11.Hedberg F. L. and Marvel C. S., “New single-step process for polybenzimidazole synthesis”, J. Polym. Sci. Polym., Chem. Ed., 12, 1823-1828 (1974)
12.Hobson L. J., Nakano Y., Ozu H., and Hayase S., “Targeting improved DMFC performance”, Journal of Power Source, 104, 79-84 (2002)
13.Iwakura Y., Uno K., “Polybenylenebenzimidazoles”, and Imai Y., J. Polym. Sci. A, 2, 2605-2615 (1964-a)
14.Iwakura Y., Uno K., and Imai Y., “Polybenzimidazoles. II. polyalkylenebenzimidazoles”, Makromol. Chem., 77, 33-40 (1964-b)
15.Li Qingfeng, Hjuler H. A., and Bierrum N. J., “Phosphoric acid doped polybenzimidazole membranes: physiochemical characterization and fuel cell applications”, Journal of Applied Electrochemistry, 31, 773-779 (2001)
16.Lu G. Q., Wang C. Y., Yen T. J., and Zhang X., “Development of a silicon-based micro direct methanol fuel cell”, Electrochemical Acta, 49, 821-828(2004)
17.Ma Y. L., Wainright J. S. , Litt M. H., and Savinell R. F., “Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells”, J. Electrochem. Soc., 151, A8-A16 (2004)
18.MacDonald J. R., Impedance spectroscopy emphasizing solid materials and systems, New York (1987)
19.Rikukawa M. and Sanui K., “Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers”, Prog. Polym. Sci., 25, 1463-1502 (2000)
20.Ueda M., Sato M., and Mochizuki A., “Poly(benzimidazole) synthesis by direct reaction of diacids and tetramine”, Macromolecules, 18, 2723 -2726 (1985)
21.Vogel H. and Marvel C. S., “Polybenzimidazoles, new thermally stable polymers”, J. Polym. Sci., 50, 511-539 (1961)
22.Vogel H. A. and Marvel C. S., “Polybenzimidazole. II”, J. Polym. Sci. A., 1, 531 (1963)
23.Wainright J. S., Wang J. T., Savinell R. F., and Litt M. H., “Acid-doped polybenzimidazoles: a new polymer electrolyte”, J. Electrochem. Soc., 142, L121-L123(1995)
24.Wang J. T., Savinell R. F., Wainright J., Litt M. H., and Yu H., “A H2/O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte”, Electrochim. Acta, 41, 193-197 (1996-a)
25.Wang J. T., Wainright J. S. , Savinell R. F., and Litt M. H., “Direct methanol fuel cell using acid-doped polybenzimidazole as polymer electrolyte”, J. Appl. Electrochem., 26, 751-756 (1996-b)
26.Xing B. and Savadogo O., “Hydrogen/Oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI)”, Electrochem. Commun., 2, 697-702 (2000-a)
27.Xing B. and Savadogo O., “Hydrogen/Oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on acid-doped polybenzimidazole (PBI)” J. New Mater. Electrochem. Syst., 3, 345 -349 (2000-b)
28.田昭武,電化學研究方法,科學出版社 (1984)
29.許照,基本電學,徐氏基金會 (1988)
30.林宗儀,矽氧烷型高分子電解質之製備與物性探討,碩士論文,成功大學 (2000)
31.黃朝榮,元智大學化工系, “燃料電池”,上課講義,2003
32.邱志豪,聚苯咪唑合成及薄膜性質,碩士論文,元智大學化工系(2004)
33.林昇佃,余子隆,張幼珍,翁芳柏,李碩仁,林育才,吳和生,魏榮宗,林修正,賴子珍,曾盛恕,詹世弘, “燃料電池:新世紀能源” (2004)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔