(3.238.130.97) 您好!臺灣時間:2021/05/18 08:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:許育彰
研究生(外文):Yu J. Shiu
論文名稱:縮聚法處理高濃度含酚衍生物廢水之研究
論文名稱(外文):Treatment of High Concentration Phenolic Wastewater by Polycondensation
指導教授:林勝雄林勝雄引用關係
指導教授(外文):Sheng H. Lin
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:166
中文關鍵詞:縮聚法
外文關鍵詞:Polycondensationphenol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:0
酚類化合物普遍存在於許多工業廢水中,而煤礦開採、石油煉製、煉焦工業等為該類化合物之主要來源。目前工業界最常用的處理方法有生物處理、物理或化學吸附、萃取、化學氧化等,雖皆能去除酚類化合物,但卻有處理濃度無法太高、處理成本昂貴等問題,為石化工業帶來很大的困擾。因此,在此研究中針對酚、鄰甲酚及間苯二酚等高濃度酚衍生物廢水以結合一步縮聚與二步縮聚程序進行處理。

實驗的研究目的是為了解決高濃度含酚衍生物廢水,去探討酚衍生物處理效果可達排放標準1 mg/L以下的可行性,實驗結果以水中酚衍生物的去除率為判斷依據,分為一步縮聚與二步縮聚程序進行處理,首先一步縮聚,以各種不同變因去加以研究討論。如Mole Ratio(甲醛莫耳數(F) /酚衍生物莫耳數(P))、鹽酸莫耳數添加量、反應時間等。由實驗結果可得知,在F/P比大、鹽酸莫耳數添加量大的情況下,酚類衍生物的處理效果有顯著的提升;生成物產量也有明顯的增加;生成物的分子量也隨著變大。雖然各酚類衍生物處理的趨勢差不多,但是最佳的處理條件有所不同,經適當操作條件的選擇,酚、鄰甲酚、間苯二酚去除率分別可達99.22%、98.78%及98.90%左右。

經由一步縮聚處理完後,水中酚類衍生物濃度已經不高,再利用二步縮聚進行處理。探討的變因有Mole Ratio(尿素莫耳數(U)/甲醛莫耳數(F))、pH值、反應時間等。由實驗結果可得知,在pH值為1的情況下有最佳的處理效果;U/F比大與反應時間長的情況下,處理效果也有提升。

由以上實驗結果證明,結合一步縮聚與二步縮聚程序改進了目前高濃度含酚衍生物廢水處理方法的缺失,可為現今酚衍生物廢水處理的實際應用提供另一種選擇。
Phenol chemical compound exist of a lot of industrial wastewater. Coal mining, petrochemical refining and coal tar making are typical industries where phenolic compounds exist in the wastewater. Currently, popular methods employed by the industries for treating phenolic wastewater include biological treatment, liquid extraction, adsorption using macroreticular resins and chemical oxidation. Although can all get rid of the phenol chemical compound , deal with the unable too high , problem of dealing with the cost of the thickness expensivly, bring very great puzzlement to the petrochemical industry. So, deal with by combining a step of polycondensation and two step polycondensation procedures high thickness phenol derivative wastewater , such as phenol , o-cresol and resorcinol in this research.

The research purpose of the experiment is to include the phenol derivative wastewater for solve the high thickness, probe into the phenol to spread out and can reach the feasibility under discharge standard 1 mg/L to carry out a biological disposal upon the result, the experimental result regards getting removal of the phenol derivative in water as the basis of judging, is divided into a step polycondensation and two step polycondensation procedures and dealt with , a step polycondensation, become and study and discuss by all kinds of at first. If Molar Ratio (formaldehyde mole (F) /phenol mole(P )),HCl Mole , response time . By the experimental result, situation of adding F/P and HCl Mole, there is apparent improvement in the treatment result of the phenol derivative ; The amount of produce produced sees a obvious increase too; The molecular weight of the product , with adding too. Although, treatment result of the phenol derivative is the same, but the best treatment condition is different to some extent, through operating the choice of the condition properly, the phenol , o-cresol , resorcinol are got removal and can be up to about 99.22% , 98.78% and 98.90%.


After dealing with a step polycondensation, the phenol derivative is not high in thickness in water, utilize two steps of polycondensation to deal with . Study and discuss by Mole Ratio (urea mole (U ) /formaldehyde mole (F )), pH value , response time. By the experimental result, there is the best treatment result for the situation of 1 in pH value; situation of adding U/F and response time, deal with result is it raise to have even.

Proved by the above experimental result, have combined a step of condensation and two step condensation procedures and improved the problem of high concentration phenol derivative wastewater treatment method at present, can offer another kind of choice for practical application of phenol derivative waste water treatment now .
摘要……………………………………………………………………….Ⅰ
Abstract…………………………………………………………………...Ⅱ
目錄……………………………………………………………………….Ⅳ
圖目錄…………………………………………………………………….Ⅷ
表目錄…………………………………………………………………….XI
第一章 緒論……………………………………………………………….1
1.1前言…………………………………………………………….…1
1.2 工業酚類衍生物簡介……………………………………………2
1.2.1 石化工業廢水簡介………………………………………...2
1.2.2 酚類衍生物特性…………………………………………...4
1.3 文獻回顧…………………………………………………………6
1.4 研究目的與內容…………………………………………………9
1.5 樹脂簡介………………………………………………………..11
1.5.1 樹脂原料………………………………………………….11
1.5.2 樹脂種類與應用………………………………………….12
第二章 基本理論………………………………………………………...15
2.1 聚合體介紹……………………………………………………..15
2.2 聚合體與聚合反應機構………………………………………..18
2.3 縮合聚合反應…………………………………………………..21
2.3.1 縮聚反應的單體………………………………………….22
2.3.2 縮聚反應歷程…………………………………………….22
2.4 酚與甲醛縮聚反應……………………………………………..25
2.4.1 Novolak反應機制…………………………………………25
2.4.2 Resol 反應機制…………………………………………...27
2.4.3 反應動力學……………………………………………….28
2.5 尿素與甲醛縮聚反應…………………………………………..31
2.5.1 反應機制………………………………………………….31
2.5.2 反應動力學……………………………………………….33


第三章 實驗裝置與分析方法…………………………………………...35
3.1 實驗裝置………………………………………………………..35
3.1.1 一步縮聚………………………………………………….35
3.1.2 二步縮聚………………………………………………….35
3.1.3 其它實驗設備…………………………………………….35
3.2 實驗流程與步驟………………………………………………..38
3.2.1 酚與甲醛縮聚實驗(一步縮聚)…………………………..38
3.2.2 酚與尿素與甲醛縮聚實驗(二步縮聚)…………………..39
3.2.3 實驗注意事項…………………………………………….40
3.3 水質分析方法與設備…………………………………………..40
3.3.1 水質分析………………………………………………….40
3.3.2 分子量分析……………………………………………….40
3.3.3 分析設備………………………………………………….41
3.4 藥品……………………………………………………………..44
第四章 酚處理結果與討論……………………………………………...46
4.1 各變因對酚與甲醛縮聚反應…………………………………..46
4.1.1 Molar Ratio的影響…………………………………….….46
4.1.2 鹽酸莫耳數的影響……………………………………….51
4.1.3 時間的影響……………………………………………….54
4.2 各變因對酚與尿素-甲醛縮聚反應…………………………….56
4.2.1 Molar Ratio的影響…………………………………….….56
4.2.2 pH值的影響……………………………………………….59
4.2.3 時間的影響……………………………………………….61
4.3 各變因對樹脂分子量影響……………………………………..63
4.3.1 Molar Ratio的影響………………………………….…….63
4.3.2 鹽酸莫耳數的影響……………………………………….63
4.3.3 時間的影響……………………………………………….63
4.4 各變因對樹脂生成量的影響…………………………………..68
4.4.1 Molar Ratio的影響………………………………………..68
4.4.2 鹽酸莫耳數的影響……………………………………….68
4.4.3 時間的影響……………………………………………….69


第五章 鄰甲分處理結果與討問………………………………………...75
5.1 各變因對酚與甲醛縮聚反應…………………………………..75
5.1.1 Molar Ratio的影響…………………………………….….75
5.1.2 鹽酸莫耳數的影響……………………………………….80
5.1.3 時間的影響……………………………………………….82
5.2 各變因對鄰甲酚與尿素-甲醛縮聚反應……………………….84
5.2.1 Molar Ratio的影響…………………………………….….84
5.2.2 pH值的影響……………………………………………….87
5.2.3 時間的影響……………………………………………….89
5.3 各變因對樹脂分子量影響……………………………………..91
5.3.1 Molar Ratio的影響……………………………………….91
5.3.2 鹽酸莫耳數的影響……………………………………….91
5.3.3 時間的影響……………………………………………….91
5.4 各變因對樹脂生成量的影響…………………………………..95
5.4.1 Molar Ratio的影響…………………………………….….95
5.4.2 鹽酸莫耳數的影響……………………………………….95
5.4.3 時間的影響……………………………………………….96
第六章 間苯二酚處理結果與討論…………………………………….102
6.1 各變因對酚與甲醛縮聚反應…………………………………102
6.1.1 Molar Ratio的影響………………………………………102
6.1.2 鹽酸莫耳數的影響……………………………………...107
6.1.3 時間的影響……………………………………………...109
6.2各變因對間苯二酚與尿素-甲醛縮聚反應……………………111
6.2.1 Molar Ratio的影響………………………………………111
6.2.2 pH值的影響……………………………………………...114
6.2.3時間的影響……………………………………………….117
6.3各變因對樹脂分子量的影響…………………………………..119
6.3.1各變因的影響…………………………………………….119
6.4 故變因對樹脂生成量的影響…………………………………123
6.4.1 Molar Ratio的影響………………………………………123
6.4.2鹽酸莫耳數的影響………………………………………123
6.4.3時間的影響………………………………………………124
第七章 多成份酚類衍生物處理結果與討論………………………….131
7.1單一成份酚類衍生物………………………………………….131
7.1.1樹脂重與初始濃度關係…………………………………136
7.2混合成份酚類衍生物………………………………………….139
7.2.1間苯二酚濃度的影響……………………………………139
7.2.2鄰甲酚濃度的影響………………………………………144
第八章 結論與建議…………………………………………………….149
8.1 結論……………………………………………………………149
8.2 建議……………………………………………………………152
參考文獻………………………………………………………………...153
附錄……………………………………………………………………...159
Aimin, L., Quanxing, Z., Jinlong, C., Zhenghao, F., Chao, L. and Wanxing, L., “Adsorption of Phenolic Compounds on Amberlite XAD-4 and its Acetylated Derivative MX-A”, Reactive & Functional Polymers, 49, 225-233 (2001)

Alberto, C., “Supramolecular Polymerizations”, Macromolecular Rapid Communications, 23, 9, 511-259 (2002)

Chang C. J., Li S. S. and Ko C. M., “Catalytic Wet Oxidations of Phenol- and p-Chlorophenol-Contaiminated Waters”, Journal Chemical Technology and Biotechnology 64, 245 (1995)

Dargaville, T. R., Guerzoni, M. G., and Solomon, D. H., “The Adsorption
of Multinuclear Phenolic Compounds on Activated Carbon”, Journal of Colloid and interface Science, 182, 17-25 (1996)

Echeverria J. M., “Kinetics of Phenolic Resol Formation by HPLC. 2. Barium Hydroxide”, Polymer, 39, 15 (1998)

Fox, C. R., “Remove and Recover Phenol”, Hydrocarbon Processing, 7, 109 (1975)

Gallup, D. I., Isacoff, E. G. and Smith Ⅲ, D. N., “Use of Ambersob Carbonaceous Adsorbent for Removal of BTEX Compound from Oil-field Produced Water”, Environmental Progress, 15, 197 (1996)

Hans R. K., and Gert S., “Cyclic Polymers by Kinetically Controlled Step-Growth Polymerization”, Macromolecular Rapid Communications, 24, 359-381 (2003)

Hsiao Y. L. and Note K., “Hydroxylation of Chlorobenzene and Phenol in Packed Bed Flow Reactor with Electrogenerated Fenton‘s Reagent”, Journal of the Electrochemical Society, 23, 943 (1993)

Hsu, Y. C. and Huang, C. J., “Characteristics of a New Gas-Induced
Reactor”, AIChE Journal, 42, 3146 (1996)

Huang C. P., Dong C. and Tang Z., “Advanced Chemical Oxidation: Its Present Role and Potential Future in Hazardous Waste Treatment”, Waste Management, 13, 361 (1993)

Kajiyama, T., Kobayashi, H., Taguchi, T., Kataoka, K., and Tanaka, J., “Improved Synthesis with High Yield and Increased Molecular Weight of Poly( , -malic acid) by Direct Polycondensation”, Biomacromolecules, 5, 169-174 (2004)

Keith C. H., Marco R., Nora K., Bruce V., and Yunshang M., “Effect of organic acids on the mechanical properties of phenolic resin composites”, Journal of Applied Polymer Science, 76, 5 (2000)

Kindzierski, W. B., Gray, M. R., Fedorak, P. M. and Hrudey, S. E., “ Activated Carbon and Synthetic Resins as Support material for Methanogenic Phenol-degrading consortia Comparison of Surface Characteristics and Initial Colonziation”, Water Environmental Research, 64, 766 (1992)

Kong, C. and Jones, W. J. “Enhanced Dechlorinaton of 2,3-Dichlorphenol in an Anaerobic Bioreactor by Addition of Auxiliary Carbon Sources”, Biotechnology Letters, 20, 561 (1998)

Kuchanov, S., Slot, H., and Stroeks, A., “Development a of Quantitative Theory of Polycondensation”, Progress in Polymer Science, 29, 563-633 (2004)


Kuo, S. W., Lin C. L., and Chang, F. C., “The Study of Hydrogen Bonding and Miscibility in Poly(Vinylpyridines) with Phenolic Resin”,
Polymer, 43, 3943-3949 (2002)

Kwon B. G., Lee D. S., Kang N. and Yoon J., “Characteristic of p-Chlorophenol Oxidation by Fenton‘s Reagent,” Water Research, 33(9), 2110 (1999)

Lin, S. H. and Wang, C. S., “Treatment of High- Strength Phenolic Wastewater by a New Two-Step Method”, Journal of Hazardous Materials 90, 205, (2002)

Qin, J., Zhang, Q. and Chuang, K. T., “Catalytic Wet Oxidation of p-Chlorophenol Oversupported Noble Metal Catalysts”, Applied Catalysis B : Environmental, 29, 115 (2001)

Riccardi, C. C., Aierbe, G. A., Echeverria, J. M., and Mondragon, I., “Modelling of Phenolic Resin Polymerisation”, Polymer, 43, 1631-1639 (2002)

Shafizadeh J. E., Guionnet S., Tillman M. S., and Seferis J. C., “Synthesis and characterization of phenolic resole resins for composite applications”, Journal of Applied Polymer Science, 73, 4 (1999)

Suzuki, Y., Hiraoka, S., Yokoyama, A., and Yokozawa, T. “Chain-Growth Polycondensation for Aromatic Polyethers with Low Polydispersities: Living Polymerization Nature in Polycondensation”, Macromolecules, 36, 13, 4759-4765 (2003)

Tokuz, R. Y., “Biological Treatment of Chlorinated Phenols Using a Rotating Biological Contactor”, 43th Purdue Industrial Waste Conference Proceedings, Woburn, MA, USA., 283 (1989)

Vouyiouka, S. N., Karakatsani, E. K., and Papaspyrides, C. D., “Solid State of Polymerization”, Progress in Polymer Science, 30, 10-37 (2005)

Wang, F. Y., Chen, C. Ma, and Wu, H. D., “Hydrogen bonding in polyamide toughened novolac type phenolic resin”, Journal of Applied Polymer Science, 74, 9 (1999)

Worden, R. M. and Donaldson, T. M., “Dynamics of a Biological Fixed Film for Phenol Degradation in a Fluidized-Bed Bioreactor”, Biotechnology and Bioengineering, 30, 398 (1987)

Wu, H. D. and Chu, P. P., “Hydrogen Bonding in The Novolac Type Phenolic Resin Blended with Phenoxy Resin”, Polymer, 38, 21 (1997)

Wu, H. D., and Chen, Chi M. Ma, “The Phase Behaviour of
Novolac Type Phenolic Resin Blended with Poly(Adipic Ester)”,
Polymer, 39, 13 (1998)

Wurm, H. J., “The Treatment of Phenolic Wastes ”, Proc. 23rd Purdue Ind. Waste Conference Proceedings, U.S.A., 23, 1054 (1968)

Yang, P. Y. and See, T. S., “Packed- Entrapped-Mixed Microbial Cell Process for Removal of Phenol and Its Compound”, 45th Purdue Industrial Waste Conference Proceedings, Woburn, MA, U.S.A., 529 (1991)

賴振立,“活性碳流體與填充床中染整廢水之催化氧化處理”,
元智大學碩士論文 (1998)

詹煌義,“催化氧化反應及捲氣式反應器之研究”, 元智大學碩士
論文 (2000)

錢庭寶,劉維琳與李金和,吸附樹脂及其應用,化學工業出版社,
第一版 (1990)

周希巠,楊德富,胡華,張全興與何炳林,“樹脂吸附法處理水楊
酸生產中含酚廢水的研究”,離子交換與吸附,5,120 (1989)

何炳林,王紅軍,張海鑰,馬建標, “兩步法處理高含量甲基酚廢
水研究”,離子交換與吸附,15,163 (1999)

莊子賢, “濕式氧化及活性污泥法處理含多成分酚類化合物廢水之
研究”,元智大學化學工程系碩士論文 (1993)

王俊欽、李季眉,“固定化微生物對2,-二氯酚及,,-三氯酚之分解”,
第二十屆廢水處理技術研討會論文集,頁1-9 (1995)

工業技術研究院化工所,煤焦分析及利用研究報告 (1984)

劉天齊,石油化工環境保護手冊,烃加工出版社,第一版,1990

鄭敏爵,“有機黏土吸附水中酚類化合物之研究”,元智大學化學
工程系碩士論文 (1998)

關長參,木材膠黏劑,科學出版社,第一版,1992

史廣興,顏鎮,木材膠黏劑化學與工業,中國林業出版社,1992

村山新一著,洪純仁編譯,酚醛樹脂,復文書局,1988

林建中,高分子化學原理,歐亞書局,1979
王善琦,高分子化學原理,北京航空航天大學出版社,1993

杜逸虹,聚合體學,科學技術叢書,1989

薛敬和,高分子化學,高立圖書有限公司,1989

蘇秀華,酸性觸媒酚醛樹脂製程危害分析及緊急排放設計,中正理
工學院碩士論文,2000

汁炳林,縮聚吸附處理酚醛廢水研究,化工環保,12,3,136-140,1992

劉喜信,含酚廢水綜合利用與處理,化工環保,3,4,195-197,1983
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top