Allen, R.M. and H. P. Bennetto, “Microbial fuel-cells: Electricity production from carbohydrates,” Appl. Biochem. Biotech., 39 (1993) 27-40.
Ban, K., T. Ueki, Y. Tamada, T. Saito, S. Imabayashi, M. Watanabe, “Fast electron transfer between glucose oxidase and electrodes via phenothiazine mediators with poly(ethylene oxide) spacers,” Electrochem. Commun., 3 (2001) 649-653.
Bard, A. J. and L. R. Faulkner, Electrochemical Methods-Fundamentals and Applications, John Wiley & Sons, USA, 2001.
Barrière, F., Y. Ferry, D. Rochefort, D. Leech, “Targetting redox polymers as mediators for laccase oxygen reduction in a membrane-less biofuel cell,” Electrochem. Comm., 6 (2004) 237-241.
Brock, T. D., Thermophiles: General, Molecular and Applied Microbiology, John Wiley & Sons, New York, 1986. Brock, T. D., Thermophilic Microorganisms and Life at High Temperatures, Springer-Verlag, New York, 1978.
Cozier, G. E., R. S. Salleh, C. Anthony, “Characterization of the membrane quinoprotein glucose dehydrogenase from Escherichia coli and characterization of site-directed mutant in which histidine-262 has been changed to tyrosine,” Biochem. J., 340 (1999) 639-647.
Gao, Z., G. Binyamin, H.-H. Kim, S. C. Barton, Y. Zhang, A. Heller, “Electrodeposition of redox polymers and co-electrodeposition of enzyme by coordinative crosslinking,” Angew Chem. Int. Ed. Engl., 41 (2002) 810-813.
Gros, R., and M. Comtat, “A bioelectrochemical polypyrrole-containing Fe(CN)63- interface for the design of a NAD-dependent reagentless biosensor,” Biosens Bioelectron., 20 (2004) 204-210.
Ikeda, T., and K. Kano, “An electrochemical approach to the studies of biological redox reaction and their applications to biosensors, bioreactors, and biofuel cells,” J. Biosci. Bioeng., 92 (2001) 9-18.
Ikeda, T., T. Sagara, and K. Niki, “Bioelectrocaalysis at electrodes coated with alcohol dehydrogenase, a quinohemoprotein with heme c serving as a built-in mediator,” J. Electroanal. Chem., 361 (1993) 221-228.
Katz, E., A. N. Shipway, I. Willner, Handbook of Fuel Cells – Fundamentals, Technology and Applications, John Wiley & Sons, USA, 2003a.
Katz, E., and I. Willner, “A biofuel cell with electrochemically switchable and tunable power output,” J. Am. Chem. Soc., 125 (2003b) 6803-6813.
Katz, E., I. Willner, A. B. Kotlyar, “A non-compartmentalized glucose|O2 biofuel cell by bioengineered electrode surfaces,” J. Electroanal. Chem., 479 (1999) 64-68.
Kim, H.H., N. Mano, X.C. Zhang, A. Heller, “A miniature membrane-less biofuel cell operating under physiological conditions at 0.5 V,” J. Electrochem. Soc., 150 (2003) A209-A213.
Kojima, K., H. Nasu, M. Shimomura, S. Miyauchi, “An interfering factor in the glucose oxidase sensing system with polypyrrole/glucose oxidase membrane,” Synthetic Metals, 71 (1995) 2245-2246.
Kristjansson, J. K., and G. A. Alfredsson, “The heterotrophic thermophilic genera Thermomicrobium, Rhodothermus, Saccharococcus, Acidothermus and Sacotothermus,” In Thermophilic Bacteria, J. K. Kristjansson (ed.), CRC Press, Boca Raton, pp. 64-76, 1992.
Kristjansson, J. K., and K. O. Stetter, “Thermophilic bacteria,” In Thermophilic Bacteria, J. K. Kristjansson (ed.), CRC Press, Boca Raton, pp.1-18, 1992.
Laurinavicius, V., J. Razumiene, B. Kurtinaitiene, I. Lapenaite, I. Bachmatova, L. Marcinkeviciene, R. Meskys, A. Ramanavicius, “Bioelectrochemical application of some PQQ-dependent enzymes” Bioelectrochemistry, 55 (2002), 29-32.
Liu, H., and B. E. Logan, “Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane,” Environ. Sci. Technol., 38 (2004) 4040-4046.
Liu, H., S. Cheng, B. E. Logan, “Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell,” Environ. Sci. Technol., 39 (2005) 658-662.
Mano, N., F. Mao, A. Heller, “A miniature biofuel cell operating in a physiological buffer,” J. Am. Chem. Soc., 124 (2002) 12962-12963.
Mano, N., F. Mao, A. Heller, “Characterics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant,” J. Am. Chem. Soc., 125 (2003) 6588-6594.
Mao, F., N. Mano, A. Heller, “Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme “wiring” hydrogels,” J. Am. Chem. Soc., 125 (2003) 4951-4957.
Montagné, M., H. Durliat, M. Comtat, “Simultaneous use of dehydrogenases and hexacyanoferrate (Ⅲ) ion in electrochemical biosensors for L-lactate, D-lactate and L-glutamate,” Anal. Chim. Acta, 278, (1993) 25-33, 1993.
Palmore, G. T. R. and G. M. Whitesides, “Microbial and enzymatic biofuel cells,” ACS Symp. Series, 566 (1994) 271-290.
Park, D. H., B. H. Kim, B. Moore, H. A. O. Hill, M. K. Song, H. W. Rhee, “Electrode reaction of Desulfovibrio desulfuricans modified with organic conductive compounds,” Biotechnol. Tech., 11 (1997) 145-148.
Park, D. H., S. K. Kim, I. H. Shin, Y. J. Jeong, “Electricity production in biofuel cell using modified graphite electrode with neutral red,” Biotechnol. Lett., 22 (2000) 1301-1304.
Pizzariello, A., M. Stred’ansky, S. Miertuš, “A glucose/hydrogen peroxide biofuel cell that uses oxidase and peroxidase as catalysts by composite bulk-modified bioelectrodes based on a solid binding matrix,” Bioelectrochemistry, 56 (2002) 99-105.
Rochefort, D., D. Leech, R. Bourbonnais, “Electron transfer mediator systems for bleaching of paper pulp,” Green Chem., 6 (2004) 14-24.
Saby, C., F. Mizutani, S. Yabuki, “Glucose sensor based on carbon paste electrode incorporating poly(ethylene glycol)-modified glucose oxidase and various mediators” Anal. Chim. Acta, 304 (1995) 33-39.
Simon, E., C. M. Halliwell, C. S. Toh, A. E.G. Cass, P. N. Bartlett, “Oxidation of NADH produced by a lactate dehydrogenase immobilised on poly(aniline)- poly(anion) composite films,” J. Electroanal. Chem., 538 (2002) 253-259.
Stetter, K. O., “Hyperthermophiles: isolation, classification and properties,” In Extremophiles: Microbial Life in Extreme Environments, K. Horikoshi and W. D. Grant (ed.), Wiley-Liss, New York, 1998.
Tatsumi, H., H. Nakase, K. Kano, and T. Ikeda, “Mechanistic study of autoxidation of reduced flavin and quinone compounds,” J. Electroanal. Chem., 443, (1998) 236-241.
Thurston, C. F., H. P. Bennetto, G. M. Delaney, “Glucose metabolism in a microbial fuel cell.Stoichiometry of product formation in a thionine-mediated proteus vulgaris fuel cell and its relation to coulombic yields,” J. Gen. Microbiol., 131 (1985) 1393-1401.
Trau, D., and R. Renneberg, “Encapsulation of glucose oxidase micropartiles within a nanoscale layer-by-layer film: immobilization and biosensor applications,” Biosens Bioelectron., 18, (2003) 1491-1499.
Uang, Y.-M., T.-C. Chou, “Fabrication of glucose oxidase/polypyrrole biosensor by gavanostatic method in various pH aqueous solutions,” Biosens. Bioelectron., 19, (2003) 141-147.
Wilkinson, S. ““Gastrobots”-benefits and challenges of microbial fuel cells in food powered robot applications,” Auton. Robots, 9 ,(2000) 99-111.
Yamada, M., MD. Elias, K. Matsushita, C. T. Migita, O. Adachi, “Escherichia coli PQQ-containing quinoprotein glucose dehydrogenase: its structure comparison with other quinoproteins,” Biochim. Biophys. Acta, 1647, (2003) 185-192.
Young, T. G., L. Hadjipetrou, and M. D. Lilly, “Theoretical aspects of biochemical fuel cells,” Biotechnol. Bioeng., 8, (1966) 581-93.
Yuhashi, N., M. Tomiyama, J. Okuda, S. Igarashi, K. Ikebukuro, K. Sode, “Development of a novel glucose enzyme fuel cell system employing protein engineered PQQ glucose dehydrogenase,” Biosens. Bioelectron., 20, (2005) 2145-2150.
林永卿,”燃料電池氫電極觸媒的一氧化碳毒化分析”,碩士論文,元智大學,2001。陳孟震,”以含浸還原法製備PEMFC膜電極組與電池之研究”,碩士論文,成功大學,2002。陳懋彥,”台灣地熱區嗜熱性細菌之研究”,博士論文,台灣大學,2002。