(54.236.58.220) 您好!臺灣時間:2021/03/05 06:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐佳宏
研究生(外文):Chia-Hong Hsu
論文名稱:嗜熱性微生物Thermusthermophilus的葡萄糖去氫化酶於生物燃料電池之應用
論文名稱(外文):Glucose dehydrogenase from Thermus thermophilus applied to Biofuel Cells
指導教授:孫一明
指導教授(外文):Yi-Ming Sun
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:60
中文關鍵詞:生物燃料電池嗜熱菌葡萄糖去氫化酶
外文關鍵詞:biofuel cellThermus thermophilusglucose dehydrogenase
相關次數:
  • 被引用被引用:1
  • 點閱點閱:186
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
本研究從嗜熱菌Thermus thermophilus中分離萃取熱穩定性高的葡萄糖去氫化酶,作為生物燃料電池的陽極觸媒,配合鐵氰化鉀(potassium ferrocyanide)為攜電分子,製作生物燃料電池的陽極系統,並測試操作條件中葡萄糖濃度、鹽濃度與溫度對所產生電流密度與功率的影響。利用鹽析法與phenyl-sepharose 液相層析,自Thermus thermophilus部分純化了葡萄糖去氫化酶,活性則是利用dye-reduction方法進行分析。在生物燃料電池之陽極系統測試中,使用自行分離萃取之葡萄糖去氫化酶,於相對Ag/AgCl參考電極之操作電壓為0.35 V 時與37 ℃的狀況下,電流密度達52 μA cm-2;當操作溫度升至70 ℃時,電流密度更提昇至127 μA cm-2。可知由嗜熱菌Thermus thermophilus所得之葡萄糖去氫化酶具廣泛的活性反應溫度,其活性會隨著溫度昇高而提昇。因此,以此一酵素所製作的生物燃料電池,在高溫的操作環境中,會有更好的表現。
Biofuel cells are miniature power-generating systems that convert chemical energy to electrical energy by using biocatalysts to catalyze the oxidation of organic substances. Because of its insensitivity to oxygen and high catalytic efficiency, glucose dehydrogenase is an ideal anodic catalyst for biofuel cells. However, the heat instability of this enzyme inherently limits its application in the bioanode. In this research, a thermostable glucose dehydrogenase was isolated from Thermus thermophilus. Utilizing the thermostable glucose dehydrogenase as the catalyst and potassium ferrocyanide as the mediator, we successfully produced a thermostable anodic system. The effects of glucose concentration, salt concentration and temperature on current density were evaluated.
The glucose dehydrogenase in Thermus thermophilus was partially purified by the ammonium sulfate fractionation and phenyl-sepharose chromatography. The activity of the glucose dehydrogenase at every step was determined by dye-reduction method.
In the study for anode of biofuel cell, the glucose dehydrogenase gave a current density of 52 μA cm-2 at 0.35 V with Ag/AgCl as a reference at 37oC. When the operating temperature was raised to 70oC , an anodic current density of 127 μA cm-2 at 0.35 V was obtained. The results show that the glucose dehydrogenase from Thermus thermophilus is a thermostable enzyme and has a wide reaction temperature. Its acitivity increased as the temperature was increased. The biofuel cell would get better efficiency by using the enzyme at higher operating temperatures.
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
表目錄 Ⅶ
圖目錄 Ⅷ

第一章 緒論 1
1.1生物燃料電池 1
1.2嗜熱性微生物 3
1.3研究目的與範疇 3
第二章 文獻回顧 6
2.1生物燃料電池之類型 6
2.1.1微生物燃料電池(Microbial fuel cells) 7
2.1.2酵素燃料電池(Enzyme fuel cells) 8
2.2嗜熱菌(Thermophiles) 10
2.3電化學測定方法 10
2.3.1循環伏安法(Cyclic voltammetry) 10
2.3.2時間-安培法(Chronoaperommetry) 12
2.4燃料電池的過電壓(Overpotential) 13
2.4.1活性過電壓之活性極化 (Activation polarization) 14
2.4.2歐姆過電壓之歐姆極化 (Ohmic polarization) 14
2.4.3質傳過電壓之濃度極化(Concentration polarization) 15
第三章 材料與實驗方法 25
3.1實驗藥品 25
3.2實驗設備 27
3.3試藥配製 28
3.3.1培養液(Medium) 28
3.3.2磷酸緩衝液(Phosphate buffer solution, PBS) 28
3.4電極的準備 28
3.4.1玻璃化碳電極 28
3.4.2鉑電極 29
3.4.3銀/氯化銀參考電極 30
3.5粗萃取(Crude extract) 30
3.6製備嗜熱菌的葡萄糖去氫化酶萃取液(Purified GDH) 31
3.7蛋白質濃度的測定 31
3.8葡萄糖去氫化酶(GDH)活性測定 32
3.9電化學測定 33
3.9.1循環伏安量測 33
3.9.1.1簡介 33
3.9.2.2實驗步驟 33
3.9.2定電位量測 33
3.9.2.1簡介 33
3.9.2.2實驗步驟 34
3.9.3定電流量測 35
3.9.3.1簡介 35
3.9.3.2實驗步驟 35
3.10熱穩定性的測定 36
第四章 結果與討論 37
4.1葡萄糖去氫化酶的活性測試 37
4.2葡萄糖去氫化酶之純化 38
4.3循環伏安量測 38
4.4操作環境之影響 39
4.4.1葡萄糖濃度 39
4.4.2 NaCl濃度 40
4.4.3溫度 40
4.5陽極之電流-電壓曲線 41
4.6熱穩定性 42
第五章 結論 55
5.1 酵素最佳反應條件 55
5.2最佳純化步驟 55
5.3生物燃料電池之陽極效能 55
第六章 參考文獻 56
Allen, R.M. and H. P. Bennetto, “Microbial fuel-cells: Electricity production from carbohydrates,” Appl. Biochem. Biotech., 39 (1993) 27-40.
Ban, K., T. Ueki, Y. Tamada, T. Saito, S. Imabayashi, M. Watanabe, “Fast electron transfer between glucose oxidase and electrodes via phenothiazine mediators with poly(ethylene oxide) spacers,” Electrochem. Commun., 3 (2001) 649-653.
Bard, A. J. and L. R. Faulkner, Electrochemical Methods-Fundamentals and Applications, John Wiley & Sons, USA, 2001.
Barrière, F., Y. Ferry, D. Rochefort, D. Leech, “Targetting redox polymers as mediators for laccase oxygen reduction in a membrane-less biofuel cell,” Electrochem. Comm., 6 (2004) 237-241.
Brock, T. D., Thermophiles: General, Molecular and Applied Microbiology, John Wiley & Sons, New York, 1986. Brock, T. D., Thermophilic Microorganisms and Life at High Temperatures, Springer-Verlag, New York, 1978.
Cozier, G. E., R. S. Salleh, C. Anthony, “Characterization of the membrane quinoprotein glucose dehydrogenase from Escherichia coli and characterization of site-directed mutant in which histidine-262 has been changed to tyrosine,” Biochem. J., 340 (1999) 639-647.
Gao, Z., G. Binyamin, H.-H. Kim, S. C. Barton, Y. Zhang, A. Heller, “Electrodeposition of redox polymers and co-electrodeposition of enzyme by coordinative crosslinking,” Angew Chem. Int. Ed. Engl., 41 (2002) 810-813.
Gros, R., and M. Comtat, “A bioelectrochemical polypyrrole-containing Fe(CN)63- interface for the design of a NAD-dependent reagentless biosensor,” Biosens Bioelectron., 20 (2004) 204-210.
Ikeda, T., and K. Kano, “An electrochemical approach to the studies of biological redox reaction and their applications to biosensors, bioreactors, and biofuel cells,” J. Biosci. Bioeng., 92 (2001) 9-18.
Ikeda, T., T. Sagara, and K. Niki, “Bioelectrocaalysis at electrodes coated with alcohol dehydrogenase, a quinohemoprotein with heme c serving as a built-in mediator,” J. Electroanal. Chem., 361 (1993) 221-228.
Katz, E., A. N. Shipway, I. Willner, Handbook of Fuel Cells – Fundamentals, Technology and Applications, John Wiley & Sons, USA, 2003a.
Katz, E., and I. Willner, “A biofuel cell with electrochemically switchable and tunable power output,” J. Am. Chem. Soc., 125 (2003b) 6803-6813.
Katz, E., I. Willner, A. B. Kotlyar, “A non-compartmentalized glucose|O2 biofuel cell by bioengineered electrode surfaces,” J. Electroanal. Chem., 479 (1999) 64-68.
Kim, H.H., N. Mano, X.C. Zhang, A. Heller, “A miniature membrane-less biofuel cell operating under physiological conditions at 0.5 V,” J. Electrochem. Soc., 150 (2003) A209-A213.
Kojima, K., H. Nasu, M. Shimomura, S. Miyauchi, “An interfering factor in the glucose oxidase sensing system with polypyrrole/glucose oxidase membrane,” Synthetic Metals, 71 (1995) 2245-2246.
Kristjansson, J. K., and G. A. Alfredsson, “The heterotrophic thermophilic genera Thermomicrobium, Rhodothermus, Saccharococcus, Acidothermus and Sacotothermus,” In Thermophilic Bacteria, J. K. Kristjansson (ed.), CRC Press, Boca Raton, pp. 64-76, 1992.
Kristjansson, J. K., and K. O. Stetter, “Thermophilic bacteria,” In Thermophilic Bacteria, J. K. Kristjansson (ed.), CRC Press, Boca Raton, pp.1-18, 1992.
Laurinavicius, V., J. Razumiene, B. Kurtinaitiene, I. Lapenaite, I. Bachmatova, L. Marcinkeviciene, R. Meskys, A. Ramanavicius, “Bioelectrochemical application of some PQQ-dependent enzymes” Bioelectrochemistry, 55 (2002), 29-32.
Liu, H., and B. E. Logan, “Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane,” Environ. Sci. Technol., 38 (2004) 4040-4046.
Liu, H., S. Cheng, B. E. Logan, “Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell,” Environ. Sci. Technol., 39 (2005) 658-662.
Mano, N., F. Mao, A. Heller, “A miniature biofuel cell operating in a physiological buffer,” J. Am. Chem. Soc., 124 (2002) 12962-12963.
Mano, N., F. Mao, A. Heller, “Characterics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant,” J. Am. Chem. Soc., 125 (2003) 6588-6594.
Mao, F., N. Mano, A. Heller, “Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme “wiring” hydrogels,” J. Am. Chem. Soc., 125 (2003) 4951-4957.
Montagné, M., H. Durliat, M. Comtat, “Simultaneous use of dehydrogenases and hexacyanoferrate (Ⅲ) ion in electrochemical biosensors for L-lactate, D-lactate and L-glutamate,” Anal. Chim. Acta, 278, (1993) 25-33, 1993.
Palmore, G. T. R. and G. M. Whitesides, “Microbial and enzymatic biofuel cells,” ACS Symp. Series, 566 (1994) 271-290.
Park, D. H., B. H. Kim, B. Moore, H. A. O. Hill, M. K. Song, H. W. Rhee, “Electrode reaction of Desulfovibrio desulfuricans modified with organic conductive compounds,” Biotechnol. Tech., 11 (1997) 145-148.
Park, D. H., S. K. Kim, I. H. Shin, Y. J. Jeong, “Electricity production in biofuel cell using modified graphite electrode with neutral red,” Biotechnol. Lett., 22 (2000) 1301-1304.
Pizzariello, A., M. Stred’ansky, S. Miertuš, “A glucose/hydrogen peroxide biofuel cell that uses oxidase and peroxidase as catalysts by composite bulk-modified bioelectrodes based on a solid binding matrix,” Bioelectrochemistry, 56 (2002) 99-105.
Rochefort, D., D. Leech, R. Bourbonnais, “Electron transfer mediator systems for bleaching of paper pulp,” Green Chem., 6 (2004) 14-24.
Saby, C., F. Mizutani, S. Yabuki, “Glucose sensor based on carbon paste electrode incorporating poly(ethylene glycol)-modified glucose oxidase and various mediators” Anal. Chim. Acta, 304 (1995) 33-39.
Simon, E., C. M. Halliwell, C. S. Toh, A. E.G. Cass, P. N. Bartlett, “Oxidation of NADH produced by a lactate dehydrogenase immobilised on poly(aniline)- poly(anion) composite films,” J. Electroanal. Chem., 538 (2002) 253-259.
Stetter, K. O., “Hyperthermophiles: isolation, classification and properties,” In Extremophiles: Microbial Life in Extreme Environments, K. Horikoshi and W. D. Grant (ed.), Wiley-Liss, New York, 1998.
Tatsumi, H., H. Nakase, K. Kano, and T. Ikeda, “Mechanistic study of autoxidation of reduced flavin and quinone compounds,” J. Electroanal. Chem., 443, (1998) 236-241.
Thurston, C. F., H. P. Bennetto, G. M. Delaney, “Glucose metabolism in a microbial fuel cell.Stoichiometry of product formation in a thionine-mediated proteus vulgaris fuel cell and its relation to coulombic yields,” J. Gen. Microbiol., 131 (1985) 1393-1401.
Trau, D., and R. Renneberg, “Encapsulation of glucose oxidase micropartiles within a nanoscale layer-by-layer film: immobilization and biosensor applications,” Biosens Bioelectron., 18, (2003) 1491-1499.
Uang, Y.-M., T.-C. Chou, “Fabrication of glucose oxidase/polypyrrole biosensor by gavanostatic method in various pH aqueous solutions,” Biosens. Bioelectron., 19, (2003) 141-147.
Wilkinson, S. ““Gastrobots”-benefits and challenges of microbial fuel cells in food powered robot applications,” Auton. Robots, 9 ,(2000) 99-111.
Yamada, M., MD. Elias, K. Matsushita, C. T. Migita, O. Adachi, “Escherichia coli PQQ-containing quinoprotein glucose dehydrogenase: its structure comparison with other quinoproteins,” Biochim. Biophys. Acta, 1647, (2003) 185-192.
Young, T. G., L. Hadjipetrou, and M. D. Lilly, “Theoretical aspects of biochemical fuel cells,” Biotechnol. Bioeng., 8, (1966) 581-93.
Yuhashi, N., M. Tomiyama, J. Okuda, S. Igarashi, K. Ikebukuro, K. Sode, “Development of a novel glucose enzyme fuel cell system employing protein engineered PQQ glucose dehydrogenase,” Biosens. Bioelectron., 20, (2005) 2145-2150.
林永卿,”燃料電池氫電極觸媒的一氧化碳毒化分析”,碩士論文,元智大學,2001。
陳孟震,”以含浸還原法製備PEMFC膜電極組與電池之研究”,碩士論文,成功大學,2002。
陳懋彥,”台灣地熱區嗜熱性細菌之研究”,博士論文,台灣大學,2002。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王立行(民81)。電腦輔助教學的理論與實務探討。資訊與教育雜誌,29,24-35。
2. 王佩蓮(民90)。資訊融入自然與科技領域教學。教師天地,112,59~64。
3. 朱則剛(民85)。建構主義對教學設計的意義。教學科技與媒體,26,3-12。
4. 林奇賢(民86)。全球資訊網輔助學習系統--網際網路與國小教育。資訊與教育雜誌,58,2-11。
5. 林奇賢(民88)。網路學習環境的設計與應用。資訊與教育雜誌,67,34-49。
6. 邱天助(民84)。電訊網路與終身教育的發展。教學科技與媒體,20,10-15。
7. 邱美虹、陳英嫻(民84)。月相盈虧之概念改變。國立台灣師範大學師大學報,40,509-548。
8. 徐新逸(民85)。情境學習在數學教育上之應用。教學科技與媒體,29,13-22。
9. 陳麗如、何榮桂(民87)。Web-Title之使用者介面設計。資訊與教育雜誌,64,21-64。
10. 陳年興(民87)。全球資訊網整合式學習環境。資訊與教育雜誌,64,2-13。
11. 楊榮祥(民83)。由國際數理教育評鑑談我國的科學教育。科學月刊,25(6),410-425。
12. 楊家興(民88)。虛擬學校:資訊網路下整合性的教學環境。教學科技與媒體,47,12-23。
13. 劉伍貞(民84)。國小學生月相概念學習之研究。國立屏東師範學院國民教育研究所碩士論文,屏東市。
14. 蔡錫濤、楊美雪(民85)。情境式學習的教學設計。教學科技與媒體,30,48-53。
15. 韓善民(民87)。我國資訊教育基礎建設簡介,研習資訊,15(2),16-21。
 
系統版面圖檔 系統版面圖檔