(3.239.33.139) 您好!臺灣時間:2021/03/02 16:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:章允建
研究生(外文):YunChien Chang
論文名稱:應用蟻群演算法在解決TFT-LCD物料規劃最佳化之研究
論文名稱(外文):Ant Colony Algorithm Applied for Optimizing TFT-LCD Material Planning
指導教授:邱昭彰邱昭彰引用關係
指導教授(外文):ChaoChang Chiu
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:78
中文關鍵詞:先進規劃系統物料規劃蟻群最佳化物料規劃田口法基因演算法
外文關鍵詞:Advanced Planning SystemAnt Colony OptimizationMaterial PlanningTaguchi MethodGenetic Algorithm
相關次數:
  • 被引用被引用:12
  • 點閱點閱:292
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:0
TFT-LCD產業為台灣現今明星產業之一,正處於起飛階段;科技製程技術不斷精進,為了降低單位成本,因而需要持續不斷地大量投資,研發新製程技術,擴充廠房,所以須靠大量接單生產製造才能弭平成本進而有利可圖。在模組組裝製程中的物料規劃程序,規劃良好與否會直接影響到之後成品的生產數量,因此需要一套能最佳化規劃TFT-LCD物料配置的決策模式,以圖能夠在許多限制之下,使得生產產量盡量最大。現階段TFT-LCD產業乃利用先進規劃系統作為其輔助決策工具,但仍有不足的地方,本研究將以蟻群最佳化演算法(ACO)為基礎來發展一套最佳化物料規劃決策模式,並利用田口法來參與參數設計部分,來使得此模式效益能達到最佳;在實驗結果方面,將會與基因演算法(GA)以及貪婪法則(Greedy)做比較,期盼能有效率地解決TFT-LCD物料規劃與配置方面的問題。
TFT-LCD is now on developing and it is one of the focal industries in Taiwan. Generation technology has advanced all the time. In order to reduce the unit cost, the TFT-LCD industries need to invest much money in inventing new technology, and expanding factory building, therefore it must take orders in mass production to fill up the cost, and then to earn profits. In the material planning process of module process, planning good or not will influence the quantity of finished products. For this reason, we need a decision model to make TFT-LCD material planning optimal which enables the quantity of production more under much restriction. Today, the decision model in the TFT-LCD industries is APS, but it still insufficient. Our research will be based on Ant Colony Optimization algorithm (ACO) to develop a optimal decision model in planning material, and use Taguchi Method in parameters design to make this model better. In the experiment, the computational results on test problems will be in comparison with Genetic Algorithm (GA) and greedy method, and then could solve the problem of material planning and allocation efficiently.
目錄
書名頁 i
論文口試委員審定書 ii
教育部授權書 iii
國科會授權書 iv
國家圖書館授權書 v
中文摘要 vi
英文摘要 vii
誌謝 viii
目錄 ix
表目錄 xi
圖目錄 xii

1. 緒論 1
1.1. 研究背景與動機 1
1.2. 研究目的與範圍 6
1.3. 研究方法與步驟 7
1.4. 論文架構 8
2. 文獻探討 10
2.1. 供應鏈管理 10
2.1.1. 供應鏈管理之概念 10
2.1.2. 最佳化於供應鏈 12
2.1.3. 最佳化於物料規劃 13
2.2. 螞蟻族群最佳化 14
2.2.1. 螞蟻族群 15
2.2.2. 螞蟻族群演算法 16
2.2.3. 螞蟻族群最佳化與物料規劃配置 19
2.3. 田口式實驗設計(Taguchi Method) 20
3. 問題定義 22
3.1. TFT-LCD產業Module製程特性分析 22
3.1.1. Module製程流程分析 22
3.1.2. 物料規劃與配置問題描述 23
3.2. 物料規劃與配置最佳化模式 27
3.2.1. 規劃模式之研究限制 28
3.2.2. 模式設計與相關說明 28
4. 物料規劃模式之建構 31
4.1. 蟻群演算法則之架構說明 31
4.2. 設定起始參數(Initial Parameters) 32
4.3. 狀態轉移規則(Transition Rule) 33
4.4. 區域費洛蒙更新(Local Pheromone Update) 35
4.5. 總體費洛蒙更新(Global Pheromone Update) 35
5. 參數設定與分析 37
5.1. 控制因子與水準之設定 37
5.2. 實驗設計與分析 38
5.3. 參數實驗結果 44
6. 系統測試結果與分析 45
6.1. 資料產生 48
6.2. 實驗結果 50
6.2.1. 第一部分實驗 50
6.2.2. 第二部份實驗 62
6.3. 實驗探討 67
7. 結論與未來展望 69
參考文獻 71
中文文獻
[1]王淑珍,『台灣邁向液晶王國之秘』,民國九十二年,中國生產力中心出版。
[2]日本能率協會,『生產管理入門』,民國八十七年,臺華工商圖書公司。
[3]田口玄一,『田口統計解析法』,民國九十二年,五南圖書公司。
[4]吳振麟、項衛中、楊昌哲、郭財吉,『物料管理』,民國九十二年,高立圖書公司。
[5]洪振創、湯玲郎,『物料管理』,民國九十二年,高立圖書公司。
[6]姚景星,『實驗設計』,民國七十八年,華泰書局。
[7]黃宇辰,『應用混合螞蟻演算法於可靠度串並聯系統元件配置問題之研究』,民國九十二年,元智大學碩士論文。
[8]黎漢林,『供應鏈管理與決策』,民國九十三年,儒林圖書公司。
[9]鍾清章,『田口式品質工程導論』,民國八十年,中華民國品質管制學會。
[10]蕭宗勝、徐熊健,『螞蟻族群演算法應用在組合問題之研究』,民國九十一年,銘傳大學碩士論文。
英文文獻
[1]Baatz, E. B., “CIO 100- Best Practices: the Chain Gang,” CIO, Vol. 8, No. 19, pp. 46-52, 1995.
[2]Beamon, B. M., “Supply Chain Design and Analysis: Models and Methods,” International Journal of Production Economics, Vol. 55, pp. 281-294, 1998.
[3]Blum, C., “Beam-ACO-hybridizing Ant Colony Optimization with Beam Search: an Application to Open Shop Scheduling,” Computers and Operations Research, Vol. 32, Iss. 6, pp. 1565-1591, 2005.
[4]Bullnheimer, B., Hartl, R. F., and Strauss, C., “Applying the Ant System to the Vehicle Routing Problem,” Presented at the 2nd Metaheuristic International Conference, Sophia-Antipolis, France, 1997.
[5]Chopra, S., Meindl, P., “Supply Chain Management,” Strategy, Planning, and Operation, 2nd Edition, 2004.
[6]Clark, A. R., “Optimization Approximations for Capacity Constrained Material Requirements Planning,” International Journal of Production Economics, Vol. 84, Iss. 2, pp.115-131, 2003.
[7]Cohen, M. A., Lee, H. L., “Strategic Analysis of Integrated Production Distribution System: Models and Methods,” Operation Research, Vol. 36, No. 2, pp.216-228, 1988.
[8]Cohen, M. A., Lee, H. L., “Resource Deployment Analysis of Global Manufacturing and Distribution Networks,” Journal of Manufacturing and Operations Management, Vol. 2, No. 2, pp. 81-104, 1989.
[9]Chen, C. L., Lee, W. C., “Multi-objective Optimization of Multi-echelon Supply Chain Networks with Uncertain Product Demands and Prices,” Computers and Chemical Engineering, Vol. 28, Iss. 6-7, pp. 1131-1144, 2004.
[10]Display Search., “Quarterly Large Area TFT-LCD Shipment and Revenues Reach Record Levels in Q2’04, Double-digit Revenue Decline Expected in Q3’04,” DisplaySearch, Sep, 2004, http://www.displaysearch.com.
[11]Dorigo, M., Caro, D. G., and Gambardella, L. M., “Ant Algorithms for Discrete Optimization,” Artificial Life, Vol. 5, No. 2, pp. 137-172, 1999.
[12]Dorigo, M., Gambardella, L. M., “Ant Colonies for the Traveling Salesman Problem,” BioSystem, Vol. 43, pp. 73-81, 1997.
[13]Dorigo, M., Gambardella, L. M., “Ant Colony System: a Cooperative Learning Approach to the Traveling Salesman Problem,” IEEE Transactions on Evolutionary Computation, Vol. 1, No. 1, pp. 53-66, 1997.
[14]Dorigo, M., Maniezzo, V., and Colorni, A., “Positive Feedback as a Search Strategy,” Technical Report, Politecnico di Milano, Italy, No. 91-016, 1991.
[15]Dorigo, M., Maniezzo, V., and Colorni, A., “The Ant System Applied to the Quadratic Assignment Problem,” Technical Report, IRIDIA/94-28, Université Libre de Bruxelles, Belgium, 1994.
[16]Dorigo, M., Maniezzo, V., and Colorni, A., “The Ant System: Optimization by a Colony of Cooperating Agents,” IEEE Transactions on System, Man, and Cybernetics-Part B, Vol. 26, No. 1. pp. 29-41, 1996.
[17]Farley, G. A., “Discovering Supply Chain Management: a Roundtable Discussion,” APICS- The Performance Advantage Vol. 7, No. 1, pp. 38-39, 1997.
[18]Gambardella, L. M., Taillard, E., and Agazzi, G., “Macs-vrptw: a Multiple Ant Colony System for Vehicle Routing Problems with Time Windows,” New Methods in Optimization, McGraw-Hill, 1999.
[19]Geoffrion, A., Graves, G., “Multicommodity Distribution Dystem Design by Bender Decomposition,” Management Science, Vol. 29, No. 5, pp. 822-844, 1974.
[20]Gong, D., Yamazaki, G., and Gen, M., “Evolutionary Program for Optimal Design of Material Distribution System,” Evolutionary Computation, Proceedings of IEEE International Conference, pp. 139-143, 1996.
[21]Hicks, D. A., “A Four Step Methodology for Using Simulation and Optimization Technologies in Strategic Supply Chain Planning,” Proceedings of the 31st Conference on Winter Simulation: Simulation---a Bridge to the Future, Vol. 2, pp. 1215-1220, 1999.
[22]Holland, J. H., “Adaptation in Natural and Artificial Systems. Ann Arbor,” The University of Michigan Press, 1975.
[23]Hung, Y. F., Wang, Q. Z., “A New Formulation Technique for Alternative Material Planning- an Approach for Semiconductor Bin Allocation Planning,” Computers & Industrial Engineering, Vol.32, Iss. 2, pp. 281-297, 1997 .
[24]Jellouli, O., Chatelet, E., “Monte Carlo Simulation and Genetic Algorithm for Optimizing Supply Chain Management in a Stochastic Environment,” Systems, Man, and Cybernetics, IEEE International Conference, Vol. 3, No. 7-10, pp. 1835 – 1839, 2001.
[25]Joines, J. A., Gokce, M. A., “Supply Chain Multi-objective Simulation Optimization,” Proceedings of the 34th Conference on Winter Simulation: Exploring New Frontiers, pp. 1306-1314, 2002.
[26]Lee, H. L., Billington, C., “Managing Supply Chain Inventory: Pitfalls and Opportunities,” Sloan Management Review, Vol. 33, No. 3, pp. 65-73, 1992.
[27]Lee, H. L., Billington, C., “The Evolution of Supply Chain Management Models and Practice at Hewlett-packard,” Interface, Vol. 25, No. 5, pp. 42-63, 1995.
[28]Lee, Y. H., Kim, S. H., “Optimal Production-distribution Planning in Supply Chain Management Using a Hybrid Simulation-analytic Approach,” Proceedings of the 32nd Conference on Winter Simulation, pp. 1252-1259, 2000.
[29]Lee, H. L., Kim, S. H., “Production-distribution Planning in Supply Chain Considering Capacity Constraints,” Computer & Industrial Engineering Journal, Vol. 43, pp. 169-190, 2002.
[30]Leguizamon, G., Michalewicz, Z., “A New Version of Ant System for Subset Problems,” Proceedings of the 1999 Congress on Evolutionary Computation, IEEE Press, Piscataway, NJ, pp. 1459-1464, 1999.
[31]Liang, Y. C., Chen, A. H. L., Kao, W. C., and Chyu, C. C., “An Ant Colony Approach to Resource-Constrained Project Scheduling Problems,” Proceedings of the 5th Asia-Pacific Industrial Engineering and Management Systems Conference 2004 (APIEMS 2004), December 12-15, Gold Coast, Australia, pp. 31.5.1-31.5.10.
[32]Kennerley, M., Neely, A. D., “Enterprise Resource Planning: Analyzing the Impact,” Integrated Manufacturing Systems, Vol. 12, No. 2, pp. 103-113, 2001.
[33]Kruse, G., “Opportunities in APS- a broader view,” Control, Vol. 26, No. 7, pp. 19-21, 2000.
[34]Kuit, R., Salomon, M., Wassenhove, L. N., and Maes, J., “Linear Programming, Simulated Annealing and Tabu Search Heuristics for Lotsizing in Bottleneck Assembly Systems,” IIE Transactions, Vol. 25, No. 1, pp. 62-72, 1993.
[35]Maniezzo, V., “Exact and Approximate Nondeterministic Tree-search Procedures for the Quadratic Assignment Problem,” Research Report CSR 98-1, Science dell’Informazione, University Di Bologna, Sede Di Cesena, Italy, 1998.
[36]Maniezzo, V., Colorni, A., “The Ant System Applied to the Quadratic Assignment Problem,” IEEE Transaction on Knowledge and Data Engineering, 1999.
[37]Mattfeld, D. C., “Scalable Search Spaces for Scheduling Problems,” Proc. GECCO ’99, pp. 1616-1629, 1999.
[38]McMullen, P. R., “An Ant Colony Optimization Approach to Addressing a JIT Sequencing Problem with Multiple Objectives,” Artificial Intelligence in Engineering, Vol. 15, Iss. 3, pp. 309-317, 2001.
[39]Meyr, H., Wagner, M., and Rohde, J., “Supply Chain Management and Advanced Planning-concepts, Models Software and Case Studies,” Berlin, pp. 99–104, 2002.
[40]New, S. J., Payne, P., “Research Frameworks in Logistics: Three Models, Seven Dinners and a Survey,” International Journal of Physical Distribution and Logistics Management, Vol. 25, No. 10, pp. 60-77, 1995.
[41]Novels, M., “How to Synchronise the Multi Plant Supply Chain,” Manufacturing Engineer of the IEEE, Vol. 83, Iss. 4, pp. 16-18, 2004.
[42]Ramalhinho, L. H., Serra, D., “Adaptive Approach Heuristics for the Generalized Assignment Problem,” Technical Report EWP Series, Department of Economics and Management, University Pompeu Fabra, Barcelona, No. 304, pp. 832-838, 1998.
[43]Robinsion, A. G., Dilts, D. M., “OR and ERP: Can Operations Research Play a Role in Fast-growing, Enterprise-wide Information Systems?” OR/MS Today, Vol. 26, No. 3, pp. 30-37, 1999.
[44]Sait, S. M., Youssef, H., “Iterative Computer Algorithms with Application in Engineering,” IEEE Computer Society, Los Alamitos, CA, 1999.
[45]Schoonderwoerd, R., Holland, O., Brtuen, J., and Rothkrantz, L., “Ant-based Load Balancing in Telecommunications Networks,” Adaptive Behavior, Vol. 5, No. 2, pp. 169-207, 1996.
[46]Shaw, K. J., Fleming, P. J., “An Initial Study of Practical Multi-objective Production Scheduling, Using Genetic Algorithms,” Proc. Int. Conf. Control ’96, 1996.
[47]Shaw, K. J., Lee, P. L., Nott, H. P., and Thompson, M., “Genetic algorithms for Multi-objective Scheduling of Combined Batch/Continuous Process Plants,” Evolutionary Computation, Proceedings of the 2000 Congress, Vol.1 , No.16-19, pp. 293-300, 2000.
[48]Shyu, S. J., Lin, B. M. T., and Yin, P. Y., “Application of Ant Colony Optimization for No-wait Flowshop Scheduling Problem to Minimize the Total Completion Time,” Computers & Industrial Engineering, Vol. 47, Iss. 2-3, pp.181-193, 2004.
[49]Stutzle, T., Hoos, H., “The MAX-MIN Ant System and Local Search for the Traveling Salesman Problem,” Evolutionary Computation, Proceedings of IEEE International Conference, pp. 309-314, 1997.
[50]Tan, K. C., “A Framework of Supply Chain Management Literature,” European Journal of Purchasing and Supply Management, Vol. 7, Iss. 1, pp. 39-48, 2001.
[51]Taillard, E. D., Gambardella, L. M., “Adaptive Memories for the Quadratic Assignment Problem,” Technical Report IDSIA-87-97, IDSIA, Lugano, Switzerland, 1997.
[52]Todd, D., Sen, P., “Distributed Task Scheduling and Allocation Using Genetic Algorithms,” Computers & Industrial Engineering, Vol. 37, Iss. 1-2, pp. 47-50, 1999.
[53]Truong, T. H., Azadivar, F., “Simulation Based Optimization for Supply Chain Configuration Design,” Winter Simulation Conference, Proceedings of the 35th Conference on Winter Simulation: Driving Innovation, pp.1268-1275, 2003.
[54]Wei, Y. M., Hu, Q. H., and Fan, Y., “Mathematical Model for the Optimization of the Allocation of Nonferrous Raw Materials in China,” Computers and Industrial Engineering, Vol. 46, Iss. 2, pp. 293-303, 2004.
[55]Yu, I. K., Song, Y. H., “A Novel Short-term Generation Scheduling Technique of Thermal Units Using Ant Colony Search Algorithms,” International Journal of Electrical Power and Energy Systems, Vol. 23, Iss. 6, pp. 471-479, 2001.
[56]Zhang, J., Xie, J., Tan, Z., Jiang, Q., and Xing, W., “Instability Analysis in MRP with Tabu Search,” Intelligent Processing Systems, 1997 IEEE International Conference, Vol. 2, No. 28-31, pp. 1371-1375, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔