(3.238.96.184) 您好!臺灣時間:2021/05/18 16:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林煌彰
研究生(外文):Huang-Cuang Lin
論文名稱:分波多工高速與區域光纖通信網路之研究
論文名稱(外文):Study of Wavelength Division Multiplexed High Speed/LAN Fiber Communication Network
指導教授:黃建彰黃建彰引用關係曹士林曹士林引用關係
指導教授(外文):Chien-Chang HuangShyh-Lin Tsao
學位類別:博士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:127
外文關鍵詞:optical fiber communicationcompressioncompressionreshaperoptical pulseCATVADSLFiber Ring
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出高速160 Gbit/s全光域高速光通信系統之研究,特別著重於高速光脈衝波產生、放大、壓縮與整形和高速光通信系統以及光纖 CATV/ADSL 網路傳輸系統之應用。
在本篇論文裡,我們提出一種新架構。這種新的架構為信號脈衝的放大和壓縮與整形。這種架構的優點不僅簡單和操作方便而且對輸出的信號脈衝波有高的峰值功率,窄的脈衝寬和具有較好脈衝的對稱性。
接著,我們將此架構應用於有線電視系統(CATV)與一種新型光纖高速通訊系統中,並進行效能評估。其中,此種新型高速光纖通訊系統是由CATV系統與非對稱式數位用戶迴路(ADSL)系統所組合而成。藉由分析、模擬與實際量測結果,我們可以得知如何改善我們的系統性能,並且此種新型架構之可行性也將可獲得證實。
This thesis discusses recent advances in 160 Gbit/s all-optical devices with a particular emphasis on high speed pulse generators, compression of Optical Pulse and high speed optical communication systems, and Fiber-Optic CATV/ADSL Network Transmission System.
In this thesis, two kinds of new structures with optical communication system are proposed. The first is the amplification and compression and reshaper of optical pulse. The advantages not only simple structure and convenient operation but also the amplified signal pulse having a high peak power, narrow pulse width and good symmetry adjustment.
Next, the applications of this optical communication system in a CATV system and a new optical fiber communication system are proposed. The new optical fiber communication system is composed of a CATV system and an ADSL system. The performances for applying the structures in these systems have been evaluated. With the numerical curves, the various applications of our systems can be analyzed and feasibility of these new architectures can be also verified.
Chapter 1 Introduction
1-1 Background
1-2 Wavelength Division Multiplexed High Speed Optical Communication
1-3 LAN Fiber Communication Network

Chapter 2 Optical Signal Pulse Symmetry Enhancement through Second- Order Super-Gaussian Controlling Pulse Tuning in Semiconductor Optical Amplifier
2-1 Theoretical Model of a Gaussian signal pulse
2-2 Results and discussions
2-2-1 Signal pulse symmetry improvement by tuning delay time
2-2-2 Signal pulse symmetry improvement by tuning the wavelength of control light
2-2-3 Signal pulse symmetry improvement by tuning the power of control light
2-3 Summary

Chapter 3 Amplification and Compression of Optical Pulse Based on Cascading a SOA and a NOLM
3-1 The structure of pulse amplifier and compression based on SOA and NOLM
3-1-1 Theoretical Model of Amplification and Compression of Optical Pulse Based on Cascading an SOA and a NOLM
3-2 Analysis Results and Discussions
3-2-1 The Variation Curves of the Peak Gain and Compression Factor of Output Signal Pulse is Against Td
3-2-2 The variation curves of the peak gain and compression factor of output signal pulse is against Pc0
3-3 Summary

Chapter 4 A 4x4 SU-8 Polymer Array Waveguide Grating
4-1 Description of SU-8 Polymeric 4X4 Array Waveguide Grating
4-2 Simulation Method and Prototype Design
4-3 Tolerance Analysis of the SU-8 Channel Waveguide
4-4 Simulation Results and Analysis Discussion
4-5 Summary

Chapter 5 Application Fiber Ring Structures with Optical Semiconductor Amplifier in a Fiber-Optic CATV Network
5-1 Configuration of the Fiber Laser
5-2 Description of Designed CATV Transmission Network
5-3 Calculation Results and Analysis Discussions
5-4 Experimental of Transmission the CATV Signals
5-5 Summary

Chapter 6 MOMW Fiber Ring Optical Laser
6-1 Description of MOMW Fiber Ring Optical Laser
6-2 Two Wavelength Band Multiple-Output Multi- Wavelength Fiber Ring Laser
6-3 The Structure of Applying MOMW Multiple Output Fiber Ring Amplifier in WDM/CATV Broadcasting Systems
6-4 Calculation Results and Numerical Analysis
6-5 Summary

Chapter 7 MOFR Lasers and Amplifiers in a Hybrid CATV and ADSL Broadcasting Optical Fiber Communication System
7-1 Design of the hybrid CATV and ADSL broadcasting system
7-2 Theoretical model of CNR/CSO/CTB in CATV System
7-3 Carrier to Noise Ratio of the CATV Network
7-4 Calculation results of CNR/CSO/CTB in CATV Transmission System
7-5 Summary

Chapter 8 Conclusions

References

Publication Lists
1
1

3
4



7
8
12

14

15

16
17


25

27


27
31


32


33
34

40

42
42
44
45
45



54
55

55
57
59
60

66
67

67


68
69
70



76

78

80
83

84
86

95

97

120

List of Figures Ⅸ

List of Table ⅩⅣ
[1] E. J. Tyler, M. Webster, R. V. Penty, I. H. White, S. Yu, and J. Rorison, “Subcarrier modulated transmission of 2.5 Gb/s over 300 m of 62.5 mm core diameter multimode fiber”, IEEE Photon. Technol. Lett., vol. 14, pp. 1743–1745, Dec. 2002.
[2] E. J. Tyler, M. Webster, R. V. Penty, and I. H. White, “Penalty free subcarrier modulated multimode fiber links for datacomm applications beyond the bandwidth limit”, IEEE Photon. Technol. Lett., vol. 14, pp. 110–112, Jan. 2002.
[3] P. Kourtessis, T. Quinlan, E. Rochat, S. D. Walker, M. Webster, I. H. White, and R. V. Penty, “0.6 Tb/s/km multimode fiber feasibility experiment using 40 channel DWDM over quadrature-subcarrier transmission”, Electron. Lett., vol. 38, no. 15, pp. 813–815, 2002.
[4] P. Pepeljugoski, D. Kuchta, Y. Kwark, P. Pleunis, and G. Kuyt, “15.6 Gb/s transmission over 1 km of next generation multimode fiber”, IEEE Photon. Technol. Lett., vol. 14, pp. 717–719, May 2002.
[5] Osamu Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing”, Department of Electrical and Electronics Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
[6] E. J. Tyler, P. Kourtessis, M. Webster, Member, IEEE, E. Rochart, T. Quinlan, S. E. M. Dudley, S. D. Walker,R. V. Penty, Member, IEEE, and I. H. White, Senior Member, IEEE, “Toward Terabit-per-Second Capacities Over Multimode Fiber Links Using SCM/WDM Techniques,” Journal of Lightwave Technology, vol. 21, no. 12, pp.3237-3243, DEC. 2003
[7] M. Nakazawa et al., “1.28 Tbit/s – 70 km OTDM transmission using third-and fourth-order simultaneous dispersion compensation with a phase modulator”, Electron Lett., 36(24): pp. 2027-2029, 2000
[8] E. Lach, M. Schmidt, K. Schuh, B. Junginger, G.Veith, “Advanced 160 Gbit/s OTDM system based on wavelength transparent 4 / 40 Gbps ETDM transmitters and receivers”, Proc. of Optical Fiber Communication Conference (OFC), pp.2-4, 2002.
[9] T. Kawai, H. Obara, “Crosstalk reduction in N×N WDM multi/demultiplexers by cascading small arrayed waveguide gratings (AWG's)”, Journal of Lightwave Technology, vol.5, no.10, pp. 1929-1937, 1997.
[10] T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source”, Electronics Letters, vol.32, no.10, pp.906-907, 1996.
[11] K. Uchiyama, H. Takara, K. Mori, T. Morioka, “160 Gbit/s all-optical time-division demultiplexing utilizing modified multiple-output OTDM demultiplexer (MOXIC)”, Proc. of Optical Fiber Communication Conference (OFC), pp.1190-1191, 2002.
[12] R. Ludwig, U. Feiste, C. Schmidt, C. Schubert, J. Berger, E. Hilliger, M. Kroh, T. Yamamoto, C. M. Weinert, H.G. Weber, “Enabling transmission at 160 Gbit/s”, Proc. of Optical Fiber Communication Conference (OFC), pp.1-2, 2002.
[13] M. Owen, M.F.C. Stephens, R.V. Penty, I.H. White, “All-optical 3R regeneration and format conversion in an integrated SOA/DFB laser”, Proc. of Optical Fiber Communication Conference (OFC), vol.3, pp.76-78, 2000.
[14] L. Billes, J. C. Simon, B. Kowalski, M. Henry, G. Michaud, P. Lamouler, F. Alard, “20 Gbit/s optical 3R regenerator using SOA based Mach-Zehnder interferometer gate”, Integrated Optics and Optical Fiber Communications, vol.2, pp.22-25,1997.
[15] H. Y. Yu, M. V. Leeuwen, J. Goldhar, “Data regeneration using an SOA/fiber grating wavelength converter”, Lasers and Electro-Optics, pp.135-136, 2000.
[16] P. Guerber, B. Lavigne, O. Leclerc, “Ultimate performance of SOA-based interferometer as decision element in 40 Gbit/s all-optical regenerator”, Proc. of Optical Fiber Communication Conference (OFC), pp.753-755, 2002.
[17] R. J. Manning, A. D. Ellis, A. J. Poustie, and K. J. Blow, “Semiconductor laser amplifiers for ultrafast all-optical signal processing”, Journal of Opt. Soc. Amer. B, vol. 11, pp.3204-3216, 1997.
[18] K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing”, IEEE Journal of Quantum Electron., vol.6, pp.1428-1435, 2000.
[19] R. J. Runser, D. Zhou, C. Coldwell, B. C.Wang, P. Toliver, K.-L. Deng, I. Glesk, and P. R. Prucnal, “Interferometric ultrafast SOA-based optical switches: from devices to applications”, IEEE Journal of Quantum Electron., vol.33, pp. 841-874, 2001.
[20] G. vanden Hoven, “Semiconductor optical amplifiers for digital and analog communication”, Proc. of Optical Fiber Communication Conference and Exhibit, pp.40-41, 1998.
[21] M. Zhao, G. Morthier, R. Baets, “Analysis and optimization of intensity noise reduction in spectrum-sliced WDM systems using a saturated semiconductor optical amplifier”, Photonics Technology Letters, vol.14, no.3, pp.390-392, 2002.
[22] P. S. Cho, Y. Achiam, G. Levy-Yurista, M. Margalit, Y. Gross, J. B. Khurgin, “Investigation of SOA nonlinearities on the amplification of DWDM channels with spectral efficiency up to 2.5 b/s/Hz”, Photonics Technology Letters, vol.16, no.3, pp.918-920, 2004.
[23] E. Udvary, T. Berceli, “Optical subcarrier label swapping by semiconductor optical amplifiers”, Journal of Lightwave Technology, vol.21, no.12, pp.3221-3225, 2003.
[24] Y. Jianjun, P. Jeppesen, “Improvement of cascaded semiconductor optical amplifier gates by using holding light injection”, Journal of Lightwave Technology, vol.19, no.5, pp.614-623, 2001.
[25] K. Kudo, T. Morimoto, K. Yashiki, T. Sasaki, Y. Yokoyama, K. Hamamoto, M. Yamaguchi, “Wavelength-selectable microarray light sources of multiple ranges simultaneously fabricated on single wafer”, Electronics Letters, vol.36, no.8, pp.745-747, 2000.
[26] B. Lading, J. Mork, S. Bischoff, B. Tromborg, H. N. Poulsen, “Pattern effects and noise accumulation in concatenated all-optical regenerators”, Lasers and Electro-Optics, vol.2 pp.527-528, 2001.
[27] R. J. Manning, A. E. Kelly, I .D. Phillips, A .D. Ellis, A. J. Poustie, K. J. Blow, “Recent advances in all-optical signal processing using semiconductor optical amplifiers”, Lasers and Electro-Optics, vol.2, pp.447-448, 1999.
[28] E. Conforti, C. M. Gallep, S. H. Ho, A.C. Bordonalli, K. S. Mo “Carrier reuse with gain compression and feed-forward semiconductor optical amplifiers”, IEEE, Microwave Theory and Techniques, vol.50, no.1, pp.77-81, 2002.
[29] J. J. Yu and P. jeppesen, “Improvement of cascaded semiconductor optical amplifier gates by using holding light injection”, Journal of Lightwave Technol., vol.19, no.5, pp. 614-623, 2001.
[30] A. E. Willner, and W. Shieh, “Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability”, Journal of Lightwave Technol., vol. 13, no.5, pp.771-778, 1995.
[31] M. Asghari, I. H.White, R.V. Penty, “Wavelength conversion using semiconductor optical amplifiers”, Journal of Lightwave Technol., vol.15, no.7, pp.1181-1190, 1997.
[32] W. Jinwei, H. Olesen, K. Stubkjaer, “Recombination, gain and bandwidth characteristics of 1.3-µm semiconductor laser amplifiers”, Journal of Lightwave Technol., vol.5, no.1, pp.184-189, 1987.
[33] B. Glance, J. M. Wiesenfeld, U. Koren, A. H. Gnauck, H. M. Presby, A. Jourdan, “High performance optical wavelength shifter”, Electron. Letters, vol.28, pp.1714-1715, 1992.
[34] I. Valiente, J. C. Simon, M .L. Ligne, “Theoretical analysis of semiconductor optical amplifier wavelength shifter”, Electron. Letters, vol. 29, pp.502-503, 1993.
[35] J. M. Wiesenfeld, B. Glance, “Cascadability and fanout of semiconductor optical amplifier wavelength shifter”, IEEE Photon. Technol. Lett., vol. 4, pp.1168-1171, 1992.
[36] T. Durhuus, B. Mikkelsen and K. E. Stubkjaer, J. “Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and intermodulation distortion”, Journal of Lightwave Technol., vol.10, no.8, pp.1056-1065, 1992.
[37] G. P. Agrawal, Nonlinear Fiber Optics (New York:Academic, 1995)
[38] G. P. Argrawal, and N. A. Olsson, “Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifers”, IEEE Journal of Quantum Electron., vol.25, no.11, pp.2297-2306, 1989.
[39] G. P. Argrawal, and N. A. Olsson, “Amplification and compression of week picosecond optical pulses by using semiconductor laser amplifiers”, Opt. Lett., vol.14, pp500-502, 1989.
[40] M. J. O’Mahony, “Semiconductor laser optical amplifiers for use in future fiber system”, Journal of Lightwave Technol., vol.6, pp.531-544, 1988.
[41] N. A. Olsson, “Lightwave systems with optical amplifiers”, Journal of Lightwave Technol., vol.7, pp.1071-1092, 1989.
[42] K. E. Stubkjaer et al., “Wavelength conversion devices and techniques”, in Proc. 22nd Eur. Conf. Optical Communication, Oslo, Norway, Sept., pp.4.33–4.40, 1996.
[43] J. J. E. Reid et al., “An international field trial at 1.3_musing an 800 km cascade of semiconductor optical amplifiers”, in Proc. 24th Eur. Conf. Optical Communication, vol. 1, Madrid, Spain, pp.567–568, 1998.
[44] J. G. L. Jennen et al., “4_10 Gbit/s NRZ transmission in the 1310 nm window over 80 km of standard single mode fiber using semiconductor optical amplifiers”, in Proc. 24th Eur. Conf. Optical Communication, vol. 1, Madrid, Spain, , pp. 235–236, 1998.
[45] Y. Sun et al., “Error-free transmission of 32_2:5 Gb/s DWDM Channels over 125 km of AllWave™ fiber using cascaded in-line semiconductor optical amplifiers”, in Tech. Dig. Topical Meeting on Optical Amplifiers and Applications, Nara, Japan, pp.PdP6_1–PdP6_4, 1999.
[46] A. J.Keating and D. D. Sampson, “Reduction of excess intensity noise in spectrum-sliced incoherent light for WDM applications”, Journal of Lightwave Technol., vol.15, pp.53–61, 1997.
[47] F. Koyama, T. Yamatoya, and K. Iga, “Highly gain-saturated GaInAsP/InP SOA modulator for incoherent spectrum-sliced light source”, in Conf. Indium Phosphide and Related Materials, pp.439–442, 2000.
[48] J. H. Han, J.W. Ko, J. S. Lee, and S. Y. Shin, “0.1-nm narrow bandwidth transmission of a 2.5 Gb/s spectrum-sliced incoherent light channel using an all-optical bandwidth expansion technique at the receiver”, IEEE Photon. Technol. Lett., vol. 10, pp.501–1503, 1998.
[49] M. Zhao, G. Morthier, and R. Baets, “Analysis and optimization of intensity noise reduction in spectrum-sliced WDM systems using a saturated semiconductor optical amplifier,” IEEE Photon. Technol. Lett., vol. 14, pp.390–392, 2002.
[50] P. Healey et al., “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs”, Electron. Lett., vol. 37, pp.1181–1182, 2001.
[51] Jianjun Yu; Clausen, A.; Poulsen, H.N.; Zheng, X.; Peucheret, C.; Jeppesen, P., “40 Gbit/s wavelength conversion in cascade of SOA and NOLM and demonstration of extinction ratio improvement”, Electronics Letter, vol.36, no.11, pp.963-964, 2000.
[52] Tang, J.M.; Spencer, P.S.; Rees, P.; Shore, K.A., “Enhanced performance of nonlinear optical loop mirrors using SOAs with robust transparency”, Lasers and Electro-Optics Europe, pp.1, 2000.
[53] Tang, J.M.; Spencer, P.S.; Rees, P.; Shore, K.A., “Enhanced transmission of nonlinear optical loop mirrors using SOAs with robust transparency”, Lasers and Electro-Optics, no.1, pp.110-111, 2000.
[54] Phillips, I.D.; Kean, P.N.; Doran, N.J.; Bennion, I.; Pattison, D.A.; Ellis, A.D., “Simultaneous clock recovery and data regeneration using a nonlinear optical loop mirror as an all-optical mixer”, Optical Fiber Communication Conference, pp.273-274, 1997.
[55] Wai P.K.A and Cao W. “Simultaneous Amplification and compression of ultrashort fundamental solitons in an erbium-doped nonlinear amplifying fiber loop mirror”, IEEE Journal of Quantum Electron., vol.39, no.4, pp.555-561, 2003.
[56] J. J. Yu and P. jeppesen, “Improvement of cascaded semiconductor optical amplifier gates by using holding light injection”, Journal of Lightwave Technol., vol.19, no.5, pp. 614-623, 2001.
[57] A. E. Willner, and W. Shieh, “Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability,” Journal of Lightwave Technol., vol. 13, no.5, pp.771-778, 1995.
[58] Yu J and Jeppesen P, “Improvement of cascaded semiconductor optical amplifier gates by using holding light injection”, Journal of Lightwave Technol. vol.19, pp.614-623, 2001.
[59] A. E. Willner, and W. Shieh., “Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fan out, and cascade ability”, IEEE Journal of Lightwave Technol., vol.13, pp.771-781,1995.
[60] J. Jennen, H. de Waardt, and G. Acket., “Modeling and performance analysis of WDM transmission links employing semiconductor optical amplifiers”, Journal of Lightwave Technol., vol.19, pp.1116-1124,2001.
[61] M.Y. Jamroa, J.M. Seniora, M.S. Leesonb, G. Murtaza, “Chirp in a wavelength converter based on a symmetrical-MZI employing SOAs”, Optics Communications, vol.209, pp.321-328, 2002.
[62] Ye Yabin. et al., “Theoretical study on wavelength conversion based on cross phase modulation using semiconductor optical amplifiers”, Journal of Infrared and Millmeter Waves, vol.22, pp.1785-1792. 2002.
[63] G. P. Agrawal, Nonlinear Fiber Optics (New York: Academic, 1995)
[64] Agrawal G. P., and Olsson N. A., “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers”, IEEE Journal of Quantum Electron., vol.25, no.11, pp.2297-2306, 1989.
[65] A. Grosso, E. Leonardi, M Mellia and A. Nucci, “Logical topologies design over WDM wavelength routed networks robust to traffic uncertainties”, IEEE Communications Letters, 5, pp.172-174, April 2001.
[66] E. Modiano, “Traffic grooming in WDM networks”, IEEE Communications Magazine, 39, pp.124-129, July 2001.
[67] U. Hilbk, T. Hermes, J. Saniter and F. J. Westphal, “High capacity WDM overlay on a passive optical network”, Electronics Letters, 32, pp. 2162-2163, Nov. 1996.
[68] S. M. Gemelos, D. Wonglumsom and L. G. Kazovsky, “LEARN: Stanford/sprint reconfigurable WDM metropolitan area network”, IEEE Lasers and Electro-Optics Society Annual Meeting, 1, pp.245-246, 1998.
[69] T. Koch, “WDM technologies: circuit issues for system deployment,” OFC, pp. 81, 1997.
[70] M. K. Smit and Cor van Dam, “PHASAR-based WDM-devices: principle, design and applications”, IEEE Journal of Lightwave Technol, 2, pp. 236-250, 1996.
[71] B. Pezeshki, F. Agahi, J. A. Kash, J. J. Welser, and others, “Wavelength-selective waveguide photodetectors in silicon-on-insulator”, Appl. Phys. Lett., 68, pp. 741-743, 1996.
[72] T. Otani, N. Antoniades, I. Roudas and T. E. Stern, “Cascadability of passband-flattened arrayed waveguide-grating filters in WDM optical networks”, IEEE Photonics Technology Letters, 11, pp.1414-1416, Nov. 1999.
[73] T. Kawai and H. Obara, “Crosstalk reduction in N/spl times/N WDM multi/demultiplexers by cascading small arrayed waveguide gratings (AWG's)”, Journal of Lightwave Technology, 15, pp.1929-1937, Oct. 1997.
[74] A. Takagi, A. Kaneko, M. Ishii, M. Itoh and A. Sugita, “Low-loss and flat pass- band 1/spl times/8 arrayed-waveguide grating multi/demultiplexers with a thermal spectrum for metropolitan area networks”, Optical Fiber Communication Conference, 2, pp.136-138, 2000.
[75] R. Amerfoort, J. B. D. Soole, C. Caneau, H. P. LeBlanc, A. Rajhel, C. Youtsey and I. Adesida, “Compact arrayed waveguide grating multifrequency laser using bulk active material”, Electronics Letters, 33, pp. 2124-2426, Dec. 1997.
[76] B. Kuhlow, G. Przyrembel, E. Pawlowski, M. Ferstl and W. Furst, “AWG-based device for a WDM overlay PON in the 1.5 /spl mu/m band”, IEEE Photonics Technology Letters, 11, pp. 218-220, Feb. 1999.
[77] M. Frey and T. Ndousse, “Wavelength conversion and call connection probability in WDM networks”, IEEE Transactions on Communications, 49, pp.1780-1787, Oct. 2001.
[78] Gangxiang Shen, S. K. Bose, Tee Hiang Cheng, Chao Lu and Teck Yoong Chai, “Performance study on a WDM packet switch with limited-range wavelength converters”, IEEE Communications Letters, 5, pp.432-434, Oct. 2001.
[79] D. Castleford, A. Nirmalathas, D. Novak and R. S. Tucker, “Optical crosstalk in fiber-radio WDM networks”, IEEE Transactions on Microwave Theory and Techniques, 49, pp. 2030-2035, Oct. 2001.
[80] C. Lim, A. Nirmalathas, D. Novak, R. S. Tucker and R. B. Waterhouse, “Technique for increasing optical spectral efficiency in millimetre-wave WDM fibre-radio”, Electronics Letters, 37, pp. 1043-1045, Aug. 2001.
[81] M. Oguma, T. Kitoh, T. Shibata, Y. Inoue, K. Jinguji, A. Himeno and Y. Hibino, “Four-channel flat-top and low-loss filter for wide passband WDM access network”, Electronics Letters, 37, pp.514-515, April 2001.
[82] C. C. Lee, T. C. Kao and S. Chi, “Simultaneous optical monitoring and fiber supervising for WDM networks using an OTDR combined with concatenated fiber gratings”, IEEE Photonics Technology Letters, 13, pp. 1026-1028, Sept. 2001.
[83] H. Hatakeyama, T. Tamanuki, K. Mori, T. Ae, T. Sasaki and M. Yamaguchi, “Uniform and high-performance eight-channel bent waveguide SOA array for hybrid PICs”, IEEE Photonics Technology Letters, 13, pp.418-420, May 2001.
[84] W. D. Qiu, H. J. Lee, J. P. Verboncoeur and C. K. Birdsall, “A time-domain 1D Kirchhoff-PIC code for coupled-cavity traveling wave tubes”, Pulsed Power Plasma Science, pp. 279, 2001.
[85] H. J. Lee, P. Mardahl, G. Penn and J. Wurtele, “One-dimensional PIC simulation of ultrashort laser pulse amplification in a plasma by a counterpropagating pump”, Pulsed Power Plasma Science, pp. 269, 2001.
[86] Y. Z. Luan, J. W. Yang, Y. C. Sun and J. D. Li, “Performanc e analysis of the multi-user receiver exploited in MC-CDMA system,” Second International Conference on 3G Mobile Communication Technologies, pp. 378-382, 2001.
[87] Yue-heng Li, Yong Wang, Haifeng Wang and Shi-xin Cheng, “A reduced complexity partial PIC detector”, VTC 2001 Fall, IEEE VTS 54th, Vehicular Technology Conference, 4, pp. 2299-2303, 2001.
[88] T. Otani, N. Antoniades, I. Roudas and T. E. Stern, “Cascadability of passband- flattened arrayed waveguide-grating filters in WDM optical networks”, IEEE Photonics Technology Letters, 11, pp.1414-1416, Nov. 1999.
[89] Yamauchi, J.; Yamamoto, Y.; Nakano, H.; Masuda, M.; Tazawa, R.; Natsume, Y.; Kawaguchi, S., “A novel AWG demultiplexer composed of slabs with islands”, Optical Fiber Communication Conference and Exhibit, pp: 662 –664, Mar. 2002.
[90] Parker, M.C.; Walker, S.D., “Design of arrayed-waveguide gratings using hybrid Fourier-Fresnel transform techniques”, IEEE Selected Topics in Quantum Electronics, Vol. 5, Issue: 5, pp: 1379 –1384, Sept.-Oct. 1999.
[91] A. Hirano, K. Yonenaga, Y. Miyamoto, H. Toba, H. Takenouchi and H. Tsuda, “640 Gbit/s (16 channel/spl times/42.7Gbit/s) WDM L-band DSF transmission experiment using 25 nm bandwidth AWG dispersion slope compensator”, Electronics Letters, 36, pp.1638-1639, Sept. 2000.
[92] H. Yamada, H. Sanjoh, M. Kohtoku, K. Takada and K. Okamoto, “Measurement of phase and amplitude error distributions in arrayed-waveguide grating multi/demultiplexers based on dispersive waveguide”, Journal of Lightwave Technology, 18, pp.1309-1320, Sept. 2000.
[93] T. Ohyama, T. Yamada, Y. Akahori, A. Kaneko, A. Sugita and K. Kato, “Hybrid integrated eight-channel multiwavelength photoreceiver consisting of refracting-facet photodiodes on arrayed waveguide grating demultiplexer”, Electronics Letters, 37, pp.48-49, Jan. 2001.
[94] A. Okada, T. Sakamoto, Y. Sakai, K. Noguchi and M. Matsuoka, “All-optical packet routing by an out-of-band optical label and wavelength conversion in a full-mesh network based on a cyclic-frequency AWG”, Optical Fiber Communication Conference and Exhibit (OFC 2001), pp. 1-3, 2001.
[95] N. Ooba, Y. Hibino, Y. Inoue and A. Sugita, “A thermal silica-based arrayed- waveguide grating multiplexer using bimetal plate temperature compensator”, Electronics Letter, 36, pp.1800-1801, Oct. 2000.
[96] Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer”, Electron. Lett, 33, pp.1945-1946, 1997.
[97] Harvey, T.G.; Allen, S.; Bone, D.J.; Bone, E.L.; Carter, N.; Cinderey, M.B.; Laidler, D.; Quim, S.; Ryan, T.G.; Summersgill, P.; Thorne, A.J.; Cush, R.; Goodwin, M.J.; Salik, M.D.; Stewart, W.J.; McRobbie, G.; “Embossed polymer waveguide devices”, Lasers and Electro-Optics, pp.29, Sep. 1994
[98] J. Brugger, Beomjoon Kim and Niek Van Huist, “Photoplastic SU-8 probes for near-field optical applications”, 2000 IEEE/LEOS International Conference on Optical MEMS, pp. 135-136, 2000.
[99] P. D. Curtis, S. Iezekiel, R. E. Miles and C. R. Pescod, “Preliminary investigations into SU-8 as a material for integrated all-optical microwave filters”, High Frequency Postgraduate Student Colloquium, pp. 116-120, 2000.
[100] S. Arscott, P. Mounaix and D. Lippens, “Transferred InP-based HBVs on glass substrate”, Electronics Letters, 35, pp. 1493-1494, Aug. 1999.
[101] K. Roberts, F. Williamson, G. Cibuzar and L. Thomas, “The fabrication of an array of microcavities utilizing SU-8 photoresist as an alternative 'LIGA' technology”, Proceedings of the Thirteenth Biennial University/Government/ Industry Microelectronics Symposium, pp. 139-141, 1999.
[102] C. M. Mann, “Fabrication technologies for terahertz waveguide”, IEEE Sixth International Conference on Terahertz Electronics Proceedings, pp. 46-49, 1998.
[103] A. Wong and D. Linton, “Application of SU-8 in flip chip bump micromachining for millimeter wave applications”, Proceedings of 3rd Electronics Packaging Technology Conference (EPTC 2000), pp. 204-209, 2000.
[104] Jerwei Hsieh; Chun-Jen Weng; Hui-Hsiung Lin; Hung-Ling Yin; Hu, J.Y.C.; Hsiao-Yu Chou; Cheng-Fung Lai; Weileun Fang; “ The study on SU-8 micro cylindrical lens for laser induced fluorescence application”, 2003 IEEE/LEOS International Conference, pp.65-66, Aug. 2003
[105] Thaysen, J.; Yalcinkaya, A.D.; Vestergaard, R.K.; Jensen, S.; Mortensen, M.W.; Vettiger, P.; Menon, A.; “SU-8 based piezoresistive mechanical sensor”, The Fifteenth IEEE International Conference, pp.320-323, Jan. 2002
[106] N. Labianca, J. Delorme, “High aspect ratio resist for thick film application”, Proc. SPIE vol.2438, pp.846-852, 1995
[107] Eyre, B.; Blosiu, J.; Wiberg, D.; “Taguchi optimization for the processing of Epon SU-8 resist”, Micro Electro Mechanical Systems, pp.218-222, Jan., 1998
[108] Williamson, F.; Shields, E.A.; “SU-8 as an electron beam lithography resist”, Microelectronics pp.57-60, July, 2003
[109] Ansel, Y.; Gindele, F.; Scheurer, J.; Schmitz, F.; “Optical waveguide device realised using two SU-8/spl trade/ layers”, IEEE/LEOS International Conference, pp.123-124, Aug. 2002
[110] Benson, T.M.; Sewell, P.; Vukovic, A.; Djurdjevic, D.Z.; “Advances in the finite difference beam propagation method”, Transparent Optical Networks, pp.36-41, June, 2001
[111] Marciniak, M.; “Beam propagation method modeling of light propagation in optical waveguides”, Mathematical Methods in Electromagnetic Theory, vol.1, pp.106-111, Jan., 1998
[112] Tsuji, Y.; Koshiba, M.; Takimoto, N.; ”Finite element beam propagation method for anisotropic optical waveguides”, Lightwave Technology, vol. 17, Issue: 4, pp.723-728, April 1999
[113] Nyman, B.M.; Prucnal, P.R.; “The modified beam propagation method”, Lightwave Technology, vol: 7, Issue: 6, pp.931-936, June 1989
[114] L.G. Luo, P.L. Chu, H.F. Liu, “1-GHz optical communication system using chaos in Erbium-doped fiber lasers”, IEEE Photonics Technology Letters, vol. (12), no.3, pp. 1041-1135, 2000.
[115] Y. T. Chieng, G. J. Cowle, R. A. Minasian, “Optimization of wavelength tuning of Erbium-doped fiber ring lasers”, Journal of Lightwave Technology, vol.(14), no.7, pp.1730–1739, 1996.
[116] F. Chollet, J. P. Goedgebuer, H. Porte, A. Hamel, “Electrooptic narrow linewidth wavelength tuning and intensity modulation of an Erbium fiber ring laser”, IEEE Photonics Technology Letters, vol.(8), no.8, pp. 1009 –1011, 1996.
[117] Cinovart, F.; Stephan, G.M.; Besnard, P.; Le Boudec, P., “Experimental bifurcation diagrams of a dual-wavelength Erbium-doped fiber laser”, Quantum Electronics Conference, pp.53-55, 2000.
[118] M. Horowitz; C.R. Menyuk; T.F. Carruthers; I.N. Duling., “Theoretical and experimental study of harmonically modelocked fiber lasers for optical communication systems”, Journal. of Lightwave Technology, vol.(18), np.11, pp. 1565-1574, 2000.
[119] M. Horowitz ; C.R. Menyuk, ”Modeling harmonically modelocked fiber lasers”, Proceedings of CLEO ’99, pp. 57-58 ,1999.
[120] T.E. Darcie, G. E. Bodeep, ”Lightwave subcarrier CATV transmission system”, IEEE Trans. Microwave Theory and Tech., pp.524-533, 1990.
[121] J. A. Chiddix, H. Laor, D. M. Pangrac, L. D. Williamson, and R. W. Wolfe, “AM video on fiber in CATV systems: need and implementation”, IEEE Journal on Selected Areas in Communications, vol. 8, no. 7, pp. 1229-39, 1990.
[122] T. E. Darcie, “Subcarrier multiplexing for lightwave networks and video distribution systems”, IEEE Journal on Selected Areas in Communication, vol. 8, no. 7, pp. 1240-48, 1990.
[123] U. Koren, B. I. Miller, M. G. Young, T. L. Koch, R. M. Jopson, A. H. Gnauck, J. D. Evankow, and M. Chien, “High frequency modulation of strained layer multiple quantum well optical amplifiers”, Electron. Lett., vol. 27, pp. 62-64, 1991.
[124] L. Zhihong; L. Caiyun; G. Yizhi, “A polarization controlled multiwavelength Er-doped fiber laser”, Fifth Asia-Pacific Conference on Optoelectronics and Communications. APCC/OECC '99, vol.(2), pp. 1506–1508 (1999).
[125] M. Gustavsson, A. Karlsson, and L. Thylen, “Traveling wave semiconductor laser amplifiers detectors”, Journal of Lightwave Technol., vol. 8, pp. 610-617, 1990.
[126] Max Ming-Kang Liu, “Principles and applications of optical communications”, IRWIN, USA, chapter 10, pp. 489-510, 1996.
[127] Stephen D. Dukes, “Photonics for cable television system design,” Communications Engineering and Design., pp. 34-48, 1992.
[128] Alameh, K.E.; Minasian, R.A.; “Optimization of fiber amplifier SCM lightwave video systems using direct and external modulation”, Journal of Lightwave Technology, Vol: 11, Issue: 1, PP: 76 –81, Jan. 1993.
[129] Liu, K.H.; Wilson, B.J.; Wei, J.Y.; “A management and visualization framework for reconfigurable WDM optical networks”, IEEE Network, Vol: 14, Issue: 6, PP: 8 –15, Nov/Dec. 2000.
[130] Berthold, J.; “Evolution of WDM in transport networks”, Optical Fiber Communication Conference, PP: 133, Feb. 1998.
[131] Taga, H.; “Long distance transmission experiments using the WDM technology”, Journal of Lightwave Technology, Vol: 14, Issue: 6, PP: 1287 –1298, Jun. 1996.
[132] Kitayama, K.; “Carrier sense using subcarrier-multiplexed signaling for optical frequency division multiple access”, Journal of Lightwave Technology, Vol: 15, Issue: 5, PP: 758 –765, May. 1997.
[133] Y.-H. Lee, J. Wu, M.-s. Kao, H.-w.-Tsao; Tsao, H.-W.; “Performance analysis of wavelength division and subcarrier multiplexing (WDM-SCM) transmission using fibre Brillouin amplification”, IEE Proceedings-Optoelectronics, vol: 139, Issue: 4, PP: 272 –279, Aug. 1992.
[134] Olshansky, R.; Lanzisera, V.A.; Hill, P.M.; “Subcarrier multiplexed lightwave systems for broad-band distribution”, Journal of Lightwave Technology, vol: 7, Issue: 9, PP: 1329 –1342, Sep. 1989.
[135] Huang-Cuang Lin, Shu-Tsung Kuo and Shyh-Lin Tsao; “Apply Multiple-Output-Fiber-Ring (MOFR) Lasers and Amplifiers in A Hybrid CATV and ADSL Broadcasting Optical Fiber Communication System”, FIO, Issue 22.5, Aug. 2003.
[136] C.-K. Chan and L. –k. Chen, “A correction scheme for measurement accuracy improvement in multichannel CATV system”, IEE, Trans. Broadcasting, vol.42, PP.122-129, Jun. 1992.
[137] Y. H. Ja, “Generalized theory of optical fiber loop and ring resonators with multiple couplers. 1: Circulating and output fields”, Applied Optics, vol. 29, pp. 3517-3523, 1990.
[138] T. Krauss, P. J. R. Laybourn, and J. Robert, “CW operation of semiconductor ring lasers”, Electron. Lett., vol. 26, pp. 2095-2097, 1990.
[139] S.-L. Tsao, Y.-T. Chen, H.-W. Tsao, and J. Wu, “Active optical two-couple fiber ring filter”, International Symposium on Communications’93, vol. 2, pp. 15-22, 1993.
[140] P. A. Davies, G. Abd-El-Hamid, “Four-port fibre-optic ring resonator”, Electronics Letters, vol. 24, pp. 662-663, 1988.
[141] Y. H. Ja, “Analysis of four-port optical fiber ring and loop resonators using a 3x3 fiber coupler and degenerate two-wave mixing”, IEEE Journal of Quantum Electronics, vol. 28, pp. 2749-2757, 1992.
[142] J. L. Zydkind, J. W. Sulhiff, J. Stone, D. J. Digiovanni, L. W. Stulz, H. M. Presby, A. Piccirilli, and P. E. Pramayon, “Electrically tunable, diode-pumped Erbium-doped fiber ring laser with fiber Fabry-Perot etalon”, Electron. Lett., vol. 27, pp. 1950-1951, 1991.
[143] A. A. N. Saleh, R. M. Jospon, J. D. Evankov, and H. Aspell, “Modeling of gain in Erbium doped fiber amplifiers”, IEEE Photon. Technol. Lett., vol. 2, pp. 714-717, 1990.
[144] H. Schmuck, Th. Pfeiffer, and G. Veith, “Widely tunable narrow linewidth Erbium doped fiber ring laser”, Electron. Lett., vol. 27, pp. 2117-2119, 1991.
[145] Th. Pfeiffer and H. Schmuck, “Widely tunable actively modelocked Erbium fiber ring laser”, Proc. of 2nd Top. Meet. Opt. Amplifiers Appl., Snowmass Village, CO, pp. 116-119, 1991.
[146] R. P. Davey, K. Smith, and A. McGuire, “High-speed, mode-locked, tunable, integrated, Erbium fiber laser”, Electron. Lett., vol. 28, pp. 482-484, 1992.
[147] R. J. Mears, L. Reekie, J. M. Jauncey, and D. N. Payne, “Low-noise Erbium-doped fiber amplifier operating at 1.54m”, Electron. Lett., vol. 23, pp. 1026-1028, 1987.
[148] J. D. Kafka, T. M. Bear, and D. W. Hall, “Mode-locked Erbium fiber laser”, Tech. Dig. Conf. Lasers Electro-Opt. (CLEO’89, Baltimore), paper FA3, 1989.
[149] J. B. Schlager, Y. Yamabayashi, D. L. Fransen, and R. I. Juneau, “Mode-locked, long-cavity, Erbium fiber lasers with subsequent soliton-like compression”, IEEE Photonics Technology Lett., 1, (9), pp. 264-266, 1989.
[150] P. B. Hansen, G. Raybon, M. -D, Chien, U. Koren, B. O. Miller, M. G. Yong, J. -M. Verdiell, and C. A. Burrus, “A 1.544m monolithic semiconductor ring laser: CW and mode-locked operation”, IEEE Photon. Technol. Lett., vol. 4, pp. 411-413, 1992.
[151] T. F. Krauss, R. M. De La Rue, and P. J. R. Laybourn, “Impact of coupler configuration onoperating characteristics of semiconductor ring lasers”, IEEE Journal of Lightwave Technol., vol. 13, pp. 1500-1507, 1995.
[152] N. V. Pederson, K. B. Jakobsen, and M. Vaa, “Mode-locked 1.5 m Semiconductor Optical Amplifier Fiber Ring”, Journal of Lightwave Technol., vol. 14, no. 5, pp. 833-838, 1996.
[153] M. S. Demokan, “A model of a diode laser actively mode-locked by gain modulation”, Int. Journal of Electron., vol. 60, no. 1, pp. 37-85, 1986.
[154] J. E. Bowers, P. A. Mortion, A. Mar and S. W. Corzine, “Actively mode-locked semiconductor lasers”, IEEE Journal of Quantum Electron., vol. 25, pp. 1426-1439, 1989.
[155] P. A. Mortion, R. J. Helkey and J. E. Bowers, “Dynamic detuning in actively mode-locked semiconductor lasers”, IEEE Journal of Quantum Electron., vol. 25, pp. 2621-2633, 1989.
[156] A. J. Lpwery, “New time-domain model for actively mode-locked, based on the transmission line laser model”, IEE Proc-j optoelectronics. vol. 136, no. 5, 1989.
[157] H. Okamura and K. Iwatsuki, “A finesse-enhanced Er-doped-fiber ring resonator”, Journal of Lightwave Technology, vol. 9, no. 11, pp. 1554-1560, 1991.
[158] Tai, K. Kyuma, and T. Nakayama, “Novel measuring method for spectral linewidth of laser diodes using fiber-optic ring resonator”, Electron. Lett., vol. 21, no. 3, pp. 91-93, 1985.
[159] K. Jwatsuki, H. Okamura, and M. Saruwatari, “Wavelength-tunable single-frequency and single-polarization Erbium-doped fiber ring laser with 1.4 kHz linewidth”, Electron. Lett., vol. 26, no. 24, pp. 2033-2035, 1990.
[160] J. A. Chiddix, H. Laor, D. M. Pangrac, L. D. Williamson, and R. W. Wolfe, “AM video on fiber in CATV systems: need and implementation”, IEEE Journal on Selected Areas in Communications, vol. 8, no. 7, pp. 1229-1239, 1990.
[161] K. H. Han, H. Kim, and Y. C. Chung, “Multi-purpose fiber-optic access network (MFAN)”, Optical Fiber Communication Conference, vol.3, pp. WN4 -1-4, 2001.
[162] D. Anthon, J. Fisher, M. Keur, K. Sweeney, D. Ott, P. Maton, and C. Emslie, “High power optical amplifiers for CATV applications”, Optical Fiber Communication Conference, vol.2, pp. TuI1 -T1-3, 2001.
[163] A. Boskovic, E. L. Buckland, “From CATV to broadband n-uple play networks: how to use possibly disruptive optical technologies?”, Optical Fiber Communication Conference, vol. 4, pp. 68 -70, 2000.
[164] A. Boskovic, V. L. da Silva, M. J. Yadlowsky, D. O. Harris, “New architectures for CATV networks”, Optical Fiber Communication Conference, vol.2, pp. 365 –367, 2000.
[165] H. Sun, M. C. Cardakli, J.-X. Cai, K.-M .Feng, H. Long, M. I. Hayee, and A. E. Willner, “Tunable compensation of dispersion-induced RF power degradation in multiple- channel SCM transmission by nonlinearly-chirped FBGs”, Technical Digest of Lasers and Electro-Optics, conf., pp. 316 –317,1999.
[166] F. Ramos and J. Marti, “Compensation for fiber-induced composite second-order distortion in externally modulated lightwave AM-SCM systems using optical-phase conjugation”, Journal of Lightwave Technology, vol. 16, no. 8, pp. 1387-1392, 1998.
[167] S. D. Dukes, “Photonics for cable television system design”, Communications Engineering and Design, pp. 34-48, 1992.
[168] T. E. Darcie, “Subcarrier multiplexing for lightwave networks and video distribution systems”, IEEE Journal on Selected Areas in Communication, vol. 8, no. 7, pp. 1240-1248, 1990.
[169] M. M.-K. Liu, “Principles and applications of optical communications”, IRWIN, USA, chapter 10, pp. 489-510, 1996.
[170] R. Olshansky, “Subcarrier multiplexed broadband: a migration path to BISDN”, IEEE Lightwave Communication System Magazine, vol. 1, no. 3, pp. 30-34, 1990.
[171] Komisarczuk, P. “IP access service provision for broadband customers - What Does Quality Cost?”, IEE Colloquium, pp. 5/1 - 5/4, June 1999.
[172] S. V. Ahamed, P. L. Gruber, and J.-F. Werner, “Digital subscriber line (HDSL and ADSL) capacity of the outside loop plant”, IEEE Journal on Selected Areas in Communications, vol. 13, no. 9, pp. 1540-1549, 1995.
[173] P. M. Crespo, R. C. Menendez, T. R. Hsing, and H. L. Lemberg, “Extending the digital transport capabilities of fiber-to-curb networks”, Proc. IEEE GLOBECOM, pp. 303.4.1-303.4.5, 1990.
[174] K. Sistanizadeh, P. S. Chow, J. M. Cioffi, “Multi-tone transmission for asymmetric digital subscriber line”, Proc. IEEE GLOBECOM’93 Conference, pp. 756-760, 1993.
[175] S. Galli, C. Valenti, K. J. Kerpez, “A frequency-domain approach to crosstalk identification in xDSL systems”, IEEE Journal on Selected Areas in Communications, vol.19, no. 8, pp.1497 –1506, Aug. 2001.
[176] C. Zeng, C. Aldana, A. A. Salvekar, and J. M.Cioffi, “Crosstalk identification in xDSL systems”, IEEE Journal on Selected Areas in Communications, vol. 19, no. 8, pp.1488 –1496, Aug. 2001.
[177] K. Parhi, “pproaches to low-power implementations of DSL systems”, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 48, no. 10, pp.1214 –1224, Oct. 2001.
[178] I. Nikolaidis, “ADSL, VDSL and multicarrier modulation [book review]”, IEEE Network, vol.15, no.1, pp 6 -6, 2001.
[179] S. Toptchiyski, V. Stylianakis, “A double byte interleaving scheme for ADSL modems”, IEEE Communications Letters, vol. 5, no.3, pp. 110 –112, March 2001.
[180] L. C. Chu, M.Brooke, “A study on multiuser DSL channel capacity with crosstalk environment”, EE Conference on Pacific Rim, vol.1, pp.176 -179 .2001.
[181] S.-L. Tsao, S.-C. Chiou and C.-Y. Hsu, “Implementation of A High Bandwidth Fiber Ring Laser for Subcarrier Microwave Communications”, Proceeding of Asia-Pacific Microwave Conference(AMPC2001), Dec.3-6, Taipei, vol. I, pp. 342-345, 2001.
[182] S.-L. Tsao, S.-C. Chiou and T.-C. Lin, “Microwave Frequency Response Measurement of A Novel Fiber Laser”, Proceeding of Asia-Pacific Microwave Conference (AMPC2001), Dec.3-6, vol.I, pp. 346-349, Taipei, 2001.
[183] M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “200-GHz FSR periodic multi/demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator”, IEEE Photonics Technology Letters, vol. 12, no. 9, pp. 1174 –1176, Sept. 2000.
[184] T. Ohno, H. Fukano, Y. Muramoto, T. Ishibashi, and T. Y. Yoshimatsu, “Measurement of intermodulation distortion in a unitraveling-carrier refracting-facet photodiode and a p-i-n refracting-facet photodiode”, IEEE Photonics Technology Letters, vol.14, pp. 375 –377, March. 2002
[185] M. C. Teich, B. E. A. Saleh, “Branching processes in quantum electronics”, IEEE Journal on Selected Topics in Quantum Electronics, vol. 6, no. 6, pp.1450 –1457, 2000.
[186] R. S. Tucker, D. M. Baney, W. V Sorin, and C. A. Flory, “Thermal noise and radiation pressure in MEMS fabry-perot tunable filters and lasers”, Selected Topics in Quantum Electronics, IEEE Journal on, vol. 8 , no. 1 , pp. 88 –97, 2002.
[187] M. Vargas, R. Pallas-Areny, “Thermal noise in a finite bandwidth”, IEEE Instrumentation & Measurement Magazine, vol.4, no. 4, pp. 23 –25, 2001.
[188] E. Gehrig, O. Hess, “Spatio-temporal dynamics of light amplification and amplified spontaneous emission in high-power tapered semiconductor laser amplifiers”, IEEE Journal of Quantum Electronics, vol.37, no. 10, pp. 1345 –1355, Oct. 2000.
[189] C. C. Lee, S. Chi, “Repeaterless transmission of 80-channel AM-SCM signals over 100-km large-effective-area dispersion-shifted fiber”, IEEE Photonics Technology Letters, vol. 12. pp: 341 -343, 2000.
[190] V. Germanov, “The impact of CSO/CTB distortion on BER characteristics by hybrid multichannel analog/QAM transmission systems Broadcasting”, IEEE Transactions on, vol. 45, no.3, pp. 348 –352, Sept. 1999.
[191] N .J Frigo, M. R Phillips, and G. E. Bodeep, “Clipping distortion in lightwave CATV systems: models, simulations, and measurements”, Journal of Lightwave Technology, vol.11, no. 1, pp.138 –146, 1993.
[192] Ching-Fuh Lin,Yi-Shin Su, and Bing-Rruey Wu. “External-cavity semiconductor laser tunable from 1.3 to 1.54μm for optical communication”, IEEE Photonics Technology Letters, pp.3 – 5, Jan. 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top