跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/14 18:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:秦維良
研究生(外文):Wei-Liang Chin
論文名稱:適應性智慧型解耦合模糊滑動控制系統設計
論文名稱(外文):Adaptive Intelligent Decoupled Fuzzy Sliding-Mode Control System Design
指導教授:林志民林志民引用關係
指導教授(外文):Chih-Min Lin
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:63
中文關鍵詞:解耦合適應性智慧型模糊滑動
外文關鍵詞:DecoupleAdaptiveIntelligentFuzzySliding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:382
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:0
本文提出「適應性模糊滑動控制器」的設計方法,利用模糊邏輯的觀念改善傳統滑動控制訊號切跳的問題;同時利用滑動模式的方法來有效地減少模糊規則的數目;並且利用李雅普諾夫函數推導出其參數之適應性調整法則,因此其閉迴路之系統穩定性亦可得証。
在本文中提出兩種適應性智慧型解耦合模糊滑動控制器設計,包括「階層式模糊滑動控制器」以及「適應性解耦合模糊滑動控制器」並將其運用到氣彈力控制系統、天車系統以及移動震盪旋轉激發器(TORA)等單輸入多輸出非線性系統上。
模擬驗證結果顯示所設計之控制器可以有效地解決單輸入多輸出系統中的耦合現象並改善其控制性能,此外也具備了穩定性與強健性之特色。
The design methods of the adaptive fuzzy sliding-mode controller are proposed in this thesis. The fuzzy logic method is applied to reduce the chattering control signal in conventional sliding-mode controller and the number of the fuzzy membership function. Also, we derive the adaptive laws and use the Lyapunov function to guarantee the stability of the closeed loop.
The proposed hierarchical fuzzy sliding-mode controller and adaptive fuzzy sliding-mode controller are applied to three practical systems; the aeroelastic systems, the overhead crane systems and the translational oscillator with rotational actuator (TORA) systems which are all single-input-multi-output (SIMO) nonlinear systems.
Simulation results show that the coupling effect of the SIMO system has been solved. Besides, it demonstrates that the system performance is improved sufficiently and stability and robustness properties are also possessed.
Chapter 1 Introduction
Chapter 2 Preliminary
Chapter 3 Hierarchical Fuzzy Sliding-Mode Control Design
Chapter 4 Adaptive Fuzzy Sliding-Mode Control Design
Chapter 5 Conclusions and Suggestions for Future Research
[1]S. W. Kim, Y. Cho, and M. Park, “A multirule-base controller using the robust property of a fuzzy controller and its design method,” IEEE Trans. Fuzzy Syst., vol. 4, no. 3, pp. 315-327, 1996.
[2]B. J. Choi, S. W. Kwak, and B. K. Kim, “Design of a single-input fuzzy logic controller and its properties,” Fuzzy Sets Syst., vol. 106, no. 3, pp. 299-308, 1999.
[3]L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Englewood Cliffs, NJ: Prentice-Hall, 1994.
[4]C. C. Lee, “Fuzzy logic in control system: fuzzy logic controller- part I/II,” IEEE Trans. Syst., Man, Cybern. B, vol. 20, no. 2, pp. 404-435, 1990.
[5]H. X. Li and H. B. Gatland, “A new methodology for designing a fuzzy logic controller,” IEEE Trans. Syst., Man, Cybern. B, vol. 25, no. 3, pp. 505-512, 1995.
[6]F. J. Lin and S. L. Chiu, “Adaptive fuzzy sliding-mode control for PM synchronous servo motor drives,” IEE Proc., Contr. Theo. Appl., vol. 45, pp. 63-72, 1998.
[7]K. K. Shyu and H. J. Shieh, “A new switching surface sliding-mode speed controller for induction motor drive systems,” IEEE Trans. Pow. Elect., vol. 11, pp. 660-667, 1996.
[8]J. J. E. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs, NJ: Prentice-Hall, 1991.
[9]C. S. Lee and G. Leitmann, “On optimal long-term management of some ecological systems subject to uncertain disturbances,” Int. J. Syst. Scien., vol. 14, pp. 979-994, 1983.
[10]J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: a survey,” IEEE Trans. Indus. Elec. vol. 40, no. 1, pp. 2-22, 1993.
[11]X. Yu, Z. Man, and B. Wu, “Design of fuzzy sliding mode control systems,” Fuzzy Sets Syst., vol. 95, no. 3, pp. 295-306, 1998.
[12]H. X. Li, H. B. Gatland, and A. W. Green, “Fuzzy variable structure control,” IEEE Trans. Syst., Man, Cybern. B, vol. 27, no. 2, pp.306-312, 1997.
[13]C. Roberto, A. P. Fotis, and J. H. Anthony, “Adaptive sliding mode control of autonomous underwater vehicles in the dive plane,” IEEE Trans. Ocea. Engin., vol. 15, no. 3, pp. 152-160, 1990.
[14]D. Zhou, C. Mu, and W. Xu, “Adaptive sliding-mode guidance of a homing missile,” J. Guid., Contr. Dyna., vol. 22, no, 4, pp.589-594, 1999.
[15]J. C. Lo, and Y. H. Kuo, “Decoupled fuzzy sliding-mode control,” IEEE Trans. Fuzzy Syst., vol. 6, no. 3, pp. 426-435, 1998.
[16]H. Lee, E. Kim, H. J. Kang, and M. Park, “Design of a sliding mode controller with fuzzy sliding surface,” IEE Proc., Contr. Theo. Appl., vol. 145, no. 5, pp. 411-418, 1998.
[17]D. W. Park, and S. B. Choi, “Moving sliding surfaces for high-order variable structure systems,” Int. J. Contr., vol. 72, no. 11, pp. 960-970, 1999.
[18]S. Y. Yi and M. J. Chung, “Systematic design and stability analysis of a fuzzy logic controller”, Fuzzy Sets Syst., vol. 72, no. 3, pp. 271-298, 1995.
[19]J. S. Glower and J. Munighan, “Designing fuzzy controllers from a variable structures standpoint”, IEEE Trans. Fuzzy Syst., vol. 5, no. 1, pp. 138-144, 1997.
[20]C. C. Kung and S. C. Lin, “A fuzzy-sliding mode controller design”, IEEE International Conference on System Engineering, pp. 608-611, 1992.
[21]F. Bouslama and A. Ichikawa, ”Application of limit fuzzy controllers to stability analysis”, Fuzzy Sets Syst., vol. 49, no. , pp. 103-120,1992.
[22]K. Watanabe, J. Tang, M. Nakamura, S, Koga, and T, Fukuda, “A fuzzy-gaussian neural network and its application to mobile robot control,” IEEE Trans. Contr. Syst. Tech., vol. 4, no. 2, pp. 193-199, 1996.
[23]T. W. Strganac, J. Ko, and D. E. Thompson, “Identification and control of limit cycle oscillations in aeroelastic systems,” J. Guid., Contr. Dyna., vol. 23, no. 6, pp. 1127-1133, 2000.
[24]R. Zhang, and S. N. Singh, “Adaptive output feedback control of an aeroelastic system with unstructured uncertainties,” J. Guid., Contr. Dyna., vol. 24, no. 3, pp. 502-509, 2001.
[25]J. Ko, T. W. Strganac, and A. Kurdila, “Adaptive feedback linearization for the control of typical wing section with structural nonlinearity,” Nonlinear Dynamics, vol. 18, no. 3, pp. 289-301, 1999.
[26]W. Wang; J. Yi; D. Zhao; and X. Liu “Incremental neural network sliding mode controller for an overhead crane,” Intelligent Mechatronics and Automation, pp. 166-171, 2004.
[27]R. T. Bupp, D. S. Bernstein, and V. T. Coppola, “A benchmark problem for nonlinear control design,” Int. J. Robu, Nonl. Contr., vol. 8, pp. 307-310, 1998.
[28]M. Margaliot, and G. Langholz, “Fuzzy control of a benchmark problem: a computing with words approach,” IEEE Trans. Fuzzy Syst., vol. 12, no. 2, pp. 230-235, 2004.
[29]M. Jankovic, D. Fontaine, and P. V. Kokotović. “TORA example: cascade-and passivity-based control designs,” IEEE Trans. Contr. Syst. Tech., vol. 4, no. 3, pp. 292-297, 1996.
[30]C. H. Lee, “Stabilization of nonlinear nonminimum phase systems adaptive parallel approach using recurrent fuzzy neural network,” IEEE Trans. Syst., Man, Cybern. B, vol. 34, no. 2, pp.1075-1088, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 胡弘道、胡寶元、許碧如 1999 外生菌根接種青剛櫟幼苗在貧瘠土壤之生長效應 中華林學季刊 32(4):451-456。
2. 李明仁 1996 彩色豆馬勃對松樹及相思樹幼苗生長抗猝倒病之效應 嘉義農專學報 49: 1-23。
3. 王銀波、吳繼光、黃衍龍、趙震慶 1993 污染土壤中囊叢枝菌根菌族群數及對重金屬耐性之研究 中華農學會報 169: 55-68。
4. 簡茂發、蔡敏光(1986)。高中生行為適應問題之研究。中國測驗學會測驗年刊,33,81-93。
5. 甘夢龍(1993)。我國國小學生行為困擾相關因素之研究。臺南師院學報,26,25-52。
6. 潘正德(1995)。大一新生人格特質、生活適應與學業成績的關係暨相關因素之研究。中原學報,24(2),35-51。
7. 雷若莉、陳曉玫、林京芬、劉雪娥、許淑蓮(2000)。Y世代護生實習壓力源、學習幫助與因應行為。長庚護理,11(4),11-23。
8. 王瑋(1989)。臨床護理人員工作壓力感及其調適行為之研究。榮總護理,6(2),97-103。
9. 楊極東(1985)。政大學生學校生活適應之研究。國立政治大學學報,52,15-58。
10. 馮燕(1992)。婦女生活壓力知覺與應對模式-多元角色的觀點。國立臺灣大學社會學刊,21,161-198。
11. 陳家駒(1988)。壓力的因應與心理疾病的預防(下)。諮商與輔導,26, 2-5。
12. 張耐、郭麗安(1994)。大學生的心理壓力研究。輔導月刊,20(3),26-35。
13. 周玉真(2003)。大學新生生活壓力的內涵初探。諮商與輔導,214,38-44。
14. 周文欽(1995)。三因素之適應模式:適應問題、因應方式及適應狀況。空大生活科學學報,1,25-44。
15. 李孟智(1996)。青少年之壓力與調適。社教資料雜誌,216,5-7。