|
[1]O. Cordón, F. Gomide, F. Herrera, F. Hoffmann, and L. Magdalena, “Ten years of genetic fuzzy systems: current framework and new trends,” Fuzzy Sets Syst., vol. 141, pp. 5-31, 2004. [2]Y. W. Chen, S. Narieda, and K. Yamashita, “Blind nonlinear system identification based on a constrained hybrid genetic algorithm,” IEEE Trans. Instrum. Meas., vol. 52, no. 3, pp. 898-902, 2003. [3]W. Zhong, J. Liu, M. Xue, and L. Jiao, “A multiagent genetic algorithm for global numerical optimization,” IEEE Trans. Syst., Man, Cybern. B, vol. 34, no. 2, pp. 1128-1141, 2004. [4]Z. Tu and Y. Lu, “A robust stochastic genetic algorithm (StGA) for global numerical optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 5, pp. 456-470, 2004. [5]J. T. Tsai, T. K. Liu, and J. H. Chou, “Hybrid Taguchi-genetic algorithm for global numerical optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 4, pp. 365-377, 2004. [6]G. Maione and D. Naso, “A genetic approach for adaptive multiagent control in heterarchical manufacturing systems,” IEEE Trans. Syst., Man, Cybern. A, vol. 33, no. 5, pp. 573-588, 2003. [7]S. K. Sharma and G. W. Irwin, “Fuzzy coding of genetic algorithms,” IEEE Trans. Evol. Comput., vol. 7, no. 4, pp. 344-355, 2003. [8]F. Cupertino, E. Mininno, D. Naso, B. Turchiano, and L. Salvatore, “On-line genetic design of anti-windup unstructured controllers for electric drives with variable load,” IEEE Trans. Evol. Comput., vol. 8, no. 4, pp. 347-364, 2004. [9]D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA: Addison-Wesley, 1989. [10]S. I. Lee and S. B. Cho, “Emergent behaviors of a fuzzy sensory-motor controller evolved by genetic algorithm,” IEEE Trans. Syst., Man, Cybern. B, vol. 31, no. 6, pp. 919-929, 2001. [11]W. Chang, J. B. Park, and Y. H. Joo, “GA-based intelligent digital redesign of fuzzy-model-based controllers,” IEEE Trans. Fuzzy Syst., vol. 11, no. 1, pp. 35-44, 2003. [12]Q. Sun, R. Li, and P. Zhang, “Stable and optimal adaptive fuzzy control of complex systems using fuzzy dynamic model,” Fuzzy Sets Syst., vol. 133, pp. 1-17, 2003. [13]H. K. Lam, F. H. Leung, and P. K. S. Tam, “Design and stability analysis of fuzzy model-based nonlinear controller for nonlinear systems using genetic algorithm,” IEEE Trans. Syst., Man, Cybern. B, vol. 33, no. 2, pp. 250-257, 2003. [14]C. F. Juang, “A hybrid of genetic algorithm and particle swarm optimization for recurrent network design,” IEEE Trans. Syst., Man, Cybern. B, vol. 34, no. 2, pp. 997-1006, 2004. [15]W. Y. Wang, C. Y. Cheng, and Y. G. Leu, “An online GA-based output-feedback direct adaptive fuzzy-neural controller for uncertain nonlinear systems,” IEEE Trans. Syst., Man, Cybern. B, vol. 34, no. 1, pp. 334-345, 2004. [16]Y. L. Sun and M. J. Er, “Hybrid fuzzy control of robotics systems,” IEEE Trans. Fuzzy Syst., vol. 12, no. 6, pp. 755-765, 2004. [17]F. H. F. Leung, H. K. Lam, S. H. Ling, and P. K. S. Tam, “Optimal and stable fuzzy controllers for nonlinear systems based on an improved genetic algorithm,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 172-182, 2004. [18]R. J. Wai, “Adaptive sliding-mode control for induction servomotor drive,” IEE Proc. Elect. Power Applicat., vol. 147, no. 6, pp. 553-562, 2000. [19]F. J. Lin, K. K. Shyu, and R. J. Wai, “Recurrent-fuzzy-neural-network sliding-mode controlled motor-toggle servomechanism,” IEEE/ASME Trans. Mechatronics, vol. 6, no. 4, pp. 453-466, 2001. [20]S. J. Chen and S. M. Chen, “Fuzzy risk analysis based on similarity measures of generalized fuzzy numbers,” IEEE Trans. Fuzzy Syst., vol. 11, no. 1, pp. 45-56, 2003. [21]J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991. [22]K. J. Astrom and B. Wittenmark, Adaptive Control. New York: Addison-Wesley, 1995. [23]F. J. Lin and C. C. Lee, “Adaptive backstepping control for linear induction motor drive to track periodic references,” IEE Proc. Electr. Power Appl., vol. 147, no. 6, pp. 449-458, 2000. [24]T. Sashida and T. Kenjo, An Introduction to Ultrasonic Motors. Oxford: Clarendon Press, 1993. [25]K. Lee, D. K. Lee, S. Borodinas, P. Vasiljev, S. Nahm, and S. J. Yoon, “Analysis of shaking beam actuator for piezoelectric linear ultrasonic motor,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 51, no. 11, pp. 1508-1513, 2004. [26]M. S. Tsai, C. H. Lee, and S. H. Hwang, “Dynamic modeling and analysis of a bimodal ultrasonic motor,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 50, no. 3, pp. 245-256, 2003. [27]Y. Ting, J. S. Huang, F. K. Chuang, and C. C. Li, “Dynamic analysis and optimal design of a piezoelectric motor,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 50, no. 6, pp. 601-613, 2003. [28]K. K. Tan, T. H. Lee, and H. X. Zhou, “Micro-positioning of linear-piezoelectric motors based on a learning nonlinear PID controller,” IEEE Trans. Mechatronics, vol. 6, no. 4, pp. 428-436, 2001. [29]R. J. Wai and J. D. Lee, “Intelligent motion control for linear piezoelectric ceramic motor drive,” IEEE Trans. Syst., Man, Cybern. B, vol. 34, no. 5, pp. 2100-2111, 2004. [30]F. J. Lin, R. Y. Duan, and J. C. Yu, “An ultrasonic motor drive using a current-source parallel-resonant inverter with energy feedback,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 31-42, 1999. [31]F. J. Lin, R. Y. Duan, R. J. Wai, and C. M. Hong, “LLCC resonant inverter for piezoelectric ultrasonic motor drive,” IEEE Trans. Power Electron., vol. 146, no. 5, pp. 479-487, 1999. [32]R. J. Wai, R. Y. Duan, J. D. Lee, and C. H. Tu, “Development of high-gain six-order resonant technique for linear piezoelectric ceramic motor driving circuit,” Pending R.O.C. Invention Patent, Appl. No. 091137812. [33]HR2 Ultrasonic Motor User Manual, Yokneam, Israel: Nanomotion Ltd., 2002. [34]P. Tino, M. Cernansky, and L. Benuskova, “Markovian architectural bias of recurrent neural networks,” IEEE Trans. Neural Networks, vol. 15, no. 1, pp. 6-15, 2004.
|