參考文獻
中文部份
1.許芳誠(2000),智慧型多準則決策支援研究:以交談式遺傳演算法為基礎的模型,國立中央大學資訊管理學系博士論文。2.黃松熙(2004),建構支援顧客創意的新產品設計模型:以價值焦點思考法為基礎,真理大學碩士論文。3.洪銘祥(2005),運用多種策略解決互動式遺傳演算法之負擔問題,真理大學碩士論文。英文部份
1.Biles J. A., P. G. Anderson and L. W. Loggi (1996), Neural Network Fitness Functions for a Musical IGA, International ICSC Symposium on Intelligent Industrial Automation and Soft Computing.
2.Branke J. and K. Deb (2004), Integrating User Preferences into Evolutionary Multi-Objective Optimization, KanGAL Report Number 2004004
3.Deb K., Amrit Pratap, Sameer Agarwal and T. Meyarivan (2000), A Fast and Elitist Multi-Objective Genetic Algorithm-NSGA-II, KanGAL Report Number 2000001
4.Deb K. (1999), Multi-objective genetic algorithms: Problem difficulties and construction of test problems, Evolutionary Computation Journal, 7(3), pp. 205-230.
5.Goldberg D.E. and J. Richardson (1987), Genetic Algorithms with Sharing for Multimodal Function Optimization, Proc. 2nd Inter. Conf. Genetic Algorithms, pp.41-49.
6.Gan J. and K. Warwick (1999), A Genetic Algorithm with Dynamic Niche Clustering for Multimodal Function Optimization, Proc. Int. Conference on Artificial Neural Nets and Genetic Algorithms.
7.Johanson B. and R. Poli (1998), GP-Music: An Interactive Genetic Programming System for Music Generation with Automated Fitness Raters, Genetic Programming 1998: Proceedings of the Third Annual Conference, pp. 181-186.
8.Lee J.-Y. and S.-B. Cho (1999), Sparse fitness evaluation for reducing user burden in interactive genetic algorithm, Proc. Of FUZZ-IEEE’99, pp. ΙΙ-998-ΙΙ1003.
9.Wang L.-H. and J.-D. Liao (2005), A Comparison of Three Fitness Prediction Strategies for Interactive Genetic Algorithms, 8th Joint Conference on Information Sciences.
10.Wang L.-H. (2006), A Comparison of Three Fitness Prediction Strategies for Interactive Genetic Algorithms, accepted by Journal of Information Science and Engineering.
11.Wang L.-H., M.-Y. Sung and C.-F. Hong (2006), Interactive Evolutionary Computation Framework and the On-chance Operator for Product Design, EvoWorkshops2006
12.Li M. and P. Vitányi (1997), An Introduction to Kolmogorov Complexity and Its Applications, New York: Springer-Verlag, pp. 502–505.
13.Solomonoff R.J. (1964), A Formal Theory of Inductive Inference, Part I, Information and Control, Part I: Vol 7, No. 1, pp. 1-22.
14.Solomonoff R.J. (1986), The Application of Algorithmic Probability to Problems in Artificial Intelligence, Uncertainty in Artificial Intelligence, pp. 473-491, Elsevier Science Publishers B.V..
15.Solomonoff R.J. (1999), Two Kinds of Probabilistic Induction, The Computer Journal, vol. 42, pp. 256-259.
16.Solomonoff R.J. (2003), Progress in incremental machine learning, TR-IDSIA-16-03 revision 2.0.
17.Kohli R. and R. Krishnamurti (1987), A heuristic approach to product design, Management Science, vol. 33 , pp.1523-1533.
18.Takagi H. (2001), Interactive Evolutionary Computation: Fusion of the Capacities of EC Optimization and Human Evaluation, Proceedings of the IEEE, vol. 89, pp. 1275-1296.