一、中文部份:
1.何鴻聖(2005),自我組織神經網路在選股策略之應用,東華大學國際經濟研究所碩士論文。2.李永全(2005),投資組合管理與分析,第一版,高立圖書有限公司。
3.杜金龍(1993),技術指標在台灣股市應用的訣竅,第一版,非凡出版社。
4.張政一(2000),類神經網路於有價證券預測股價及漲跌之研究,文化大學國際企業管理研究所碩士論文。5.黃煥彰(1997),提高台灣電子類股投資績效之研究-類神經網路結合技術指標,國立中興大學企業管理研究所碩士論文。6.楊東昌(2004),自組織映射圖神經網路改善模式與分群應用之回顧研究,華梵大學工業工程與經營資訊學系碩士論文。7.銘傳大學財務金融研究中心(1999),投資分析+Matlab應用,第一版,全華科技圖書有限公司。
8.劉克一(2000),以遺傳演算法演化類神經網路在股價預測上的應用,真理大學管理科學研究所碩士論文。二、英文部份:
1.Deboeck, G. and T. Kohonen (1998), Visual Exploration in Finance with Self-Organizing Maps, Springer.
2.De Bondt, Werner F. M. and Richard H. Thaler (1985), “Does the Stock Market Overreact ? ,” Journal of Finance, 40, 793-805.
3.De Bondt, Werner F.M. and Richard H. Thaler (1987), “Further Evidence on Investor Overreaction and Stock Market Seasonality ,” Journal of Finance ,42, 557-581.
4.Fama, E.(1965), “Efficient Capital Markets,” Journal of Finance, March, 77-91.
5.Fama, E.(1970), “Efficient Capital Markets: A Review of Theory and Empirical Work,” Journal of finance, 25, 607-636.
6.Fama, E. and K. R. French(1992), “The Cross Section of Expected Stock Returns,” Journal of Finance, 47, 427-465.
7.Markowitz, H. M. (1952), “Portfolio Selection,” Journal of Finance, March, 77-91.
8.Mandelbrot, B. B.(1997), Fractals and Scaling in Finance, Springer.
9.Kiviluoto, K.(1998), “Predicting Bankruptcies With the Self-organizing
Map,” Neurocomputing, 21, 191-201.
10.Kohonen, T.(1982), “Self-Organized Formation of Topologically Correct Feature Maps,” Biological Cybernetic, 43, 59-69.
11.Kohonen, T.(1995), The Self-Organizing Maps, Springer.
12.Sharpe, W.F.(1996), “Mutual Fund Performance,” Journal of Business, 39, 119-138.
13.Sharpe, W.F.(1994), “The Sharpe Ratio,” Journal of Portfolio Management, 39, 49-58.
14.Tan, C.N.W.(1993),“Trading a NYSE-stock With a Simple Artificial Neural Network-Financial Trading System,” Artificial Neural Networks and Expert Systems, First Zealand International Two-Stream Conference , 24-26.
15.White , H.(1988), “Economic Prediction Using Neural Networks: The Case of IBM Daily Stock Returns,” IEEE International Joint Conference on Neural Networks, 451-458.