跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/16 00:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭碩堯
研究生(外文):Hsiao Shuo yao
論文名稱:Inconel718經由反覆熱處理之微觀組織分析
論文名稱(外文):Inconel 718 Microstructure Analysis After Cyclic Heat Treatment
指導教授:王樂民王樂民引用關係
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:兵器系統工程研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:97
中文關鍵詞:Inconel718反覆熱處理銲接
相關次數:
  • 被引用被引用:1
  • 點閱點閱:409
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Inconel 718鎳基超合金擁具有良好之高溫強度、耐高溫腐蝕等優異性質,同時亦具備優良之鑄造性、加工性及銲接性。然在使用結構體組裝完成後,原材會經過反覆熱處理,而銲道會經過鏟修、反覆銲接與熱處理等製程。本研究主要在反覆熱處理對Inconel 718機械性質之研究基礎上,針對其機械性質擁有特殊變化之試片,進行微觀結構觀察,探討固溶時效反覆熱處理對微觀組織與機械性質之影響。
實驗結果顯示,M4{2次(980℃*1h/980℃*1h/720℃*8h/620℃*10h)}顯微組織在晶界之δ相連續,且大量長入晶粒,M10{4次(980℃*1h/980℃*1h/720℃*8h /620℃*10h)}晶界δ相不連續,且無長入晶粒,應是受反覆熱處理影響,M10δ相到達溶解臨界點,不再和M4相同隨反覆熱處理次數增加而累積析出,轉而大量融回基地,之後M13{5次(980℃*1h/980℃*1h/720℃*8h/620℃*10h)}δ相溶解溫度恢復超過固溶溫度,δ相又累積,強度降低,回到接近M1{1次(980℃*1h /980℃*1h/720℃*8h/620℃*10h)}的拉伸強度值,顯有循環回歸之趨勢。
M11{4次(1065℃*1h/1065℃*1h/720℃*8h/620℃*10h)}在晶界上有許多顆粒狀NbC及少量NbC薄膜,M14{5次(1065℃*1h/1065℃*1h/720℃*8h/620℃*10 h)}晶界顆粒狀NbC及大量NbC薄膜並存,抵抗晶界滑移,導致M14伸長率及衝擊韌性大幅提昇,而M9{3次(1065℃*1h/1065℃*1h/760℃*10h /650℃*10 h)}顯微結構,晶界之顆粒狀NbC比M11更密集,雖較多晶界顆粒NbC能提昇延展性,但仍和M11、M14有同樣問題,較多的晶界顆粒狀NbC或大量晶界NbC薄膜於銲接時,極有可能在熱影響區增加微裂縫生成機會,不排除此為造成銲件提前破裂的原因。
The Inconel 718, a nickel-based superalloy with its high strength and high corrosion resistance at elevated temperature, becomes a popular superalloy for high high temperature application in the past decades. It has good castability, workability, and weldability enabling it being widely used to produce aero-parts and as structural material. This research is based on the mechanical properties of Inconel 718 after cyclic heat treatment. In accordance with the special changes of the testing pieces on its mechanical properties, the cyclic heat treatment has significantly affected the microstructure and the mechanical property.
The results of M4 condition {twice heat treatment (980℃*1h/980℃*1h/ 720℃ *8h/620℃*10h)} show that the δ phase precipitate significantly on both grain boundary and within the grain with the needle shape. At M10 condition {4 times heat treatment(980℃*1h/980℃*1h/720℃*8h /620℃*10h)}. δ phase does not continuiously precipitate on grain boundary and the amount of δ phase are significantly decreased in the grain interior. It suggests that at M10 condition δ phase may reach the critical point of dissolution, which differs from M4 with lots of δ phase accumulated. In other words, once the critical point of dissolution is reached, further cyclic heat trement would not produce extra precipitated δ phase may also result in the precipitates dissolve into the matrix.
At M13 condition {5 times heat treatment(980℃*1h/980℃*1h/720℃*8h /620℃*10h)} the dissolving temperature of δ phase is hogher than that operating temperature of solution treatment, δ phase may significantly precipitate, loading to its decreased of M13 to a value close to the M1 condition {1 time heat treatment(980℃*1h/980℃*1h/720℃ *8h /620℃*10h)}. Obviously, it had a similar trend of circulating.
At M11 condition {4 times heat treatment(1065℃*1h/1065℃*1h/720℃*8h /620℃*10h)}, many NbC particles and a few NbC films are found. At M14 condition {5 times heat treatment(1065℃*1 h/1065℃*1h/720℃*8h/620℃*10 h)} , it appears significantly amount of NbC particles as well as NbC films present on the grain enhancing the resistance of grain boundary sliding , therefore its ductily and toughness. At M9 condition {3 times heat treatment(1065℃*1h/ 1065℃*1h /760℃*10h/650℃*10 h)},the NbC particles are more intensity presitipated at grain boundary than that M11 condition, althougth the presence of NbC particles may enhance the ductily of Inconel 718. However,similar problem as M11 and M14 may occur when welded. The significantly amount of NbC particles and NbC films at grain boundary may possibily produce microfissuring in HAZ, which is a possible reason for unexpected earlier fracture.
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 vi
表目錄 viii
圖目錄 ix
1.前言……………… 1
2.文獻回顧 2
2.1簡介 2
2.2鎳基超合金發展背景 2
2.3鎳基超合金種類、特性 3
2.4鎳基超合金Inconel 718 4
2.4.1Inconel 718發展及應用 4
2.4.2Inconel 718成分及合金元素的影響 5
2.4.3Inconel 718顯微組織及其影響 7
2.4.4Inconel 718強化機構 10
2.4.5Inconel 718熱處理 12
2.4.6Inconel 718銲接及龜裂 13
3.實驗方法與步驟 31
3.1實驗規劃 31
3.2實驗步驟 31
3.2.1實驗材料 31
3.2.2顯微組織分析 31
3.2.3耐蝕性分析(動態極化) 33
4.結果與討論 49
4.1金相顯微結構觀察 49
4.2XRD觀察分析 52
4.3SEM顯微結構觀察 53
4.4TEM顯微結構觀察 60
4.5耐蝕性測試(動態極化) 61
5.結論 91
參考文獻 93
[1]李長征,“多種鎳基超合金放電加工特性與表面完整性研究”,碩士論文,中正理工學院,桃園,第5-8頁,2004。
[2]陳永璋、陳建銘,“鎳基合金之特性與其銲接方法”,銲接與切割期刊,第十卷,第三期,第13-25頁,2000。
[3]陳永璋,“鎳基合金之材料相關知識”,銲接與切割期刊,第十卷,第四期,第31-40頁,2000。
[3]Donchie, M. J., Superalloys : a Technical Guide, Materials Park, New York, pp.25-107, 2002.
[4]Betteridge, W., and Heslop, J., The Nimonic Alloys 2nd ed, Edward Arnold, London, pp.84-89, 1974.
[6]Sims, C. T., and Hagel, W. C., The Superalloys, John Wiley & Sons, New York, pp.52-137, 1972.
[7]陳雅嵐,“應用雷射於金屬堆積成型與鎳基超合金銲補之研究”,碩士論文,臺灣大學,台北,第14-26頁,2002。
[8]蔡忠甫,“切削溫度對Inconel-718加工特性”,碩士論文,中正大學,嘉義,第8-14頁,2003。
[9]李瑞棋,“Inconel 718超合金銲接性之研究”,碩士論文,台灣師範大學,台北,第3-24頁,2003。
[10]Rizzo, F. J., and Buzzanell, J. D., “Effect of Chemistry Variations on Structural Stabilbty of Alloy 718,” Journal of Metals, Vol.10, pp.24-34, 1969.
[11]John, F. Radavich., “The Physical Metallurgy of Cast and Wrought Alloy 718,” Superalloy 718 Metallurgy and Applications, The Minerals Metals & Materials Society, New York, pp.229-240, 1989.
[12]劉定國,“IN-718超合金微觀組織之研究”,碩士論文,中正理工學院,桃園,第6-43頁,1984。
[13]楊俊彬,“Inconel-718 GTA銲接及其銲接後熱處理之研究”,碩士論文,臺灣大學,台北,第8-20頁,1985。
[14]林朝蒼,“熱處理對鑄造超合金Inconel-718之機械性質及顯微組織的影響”,碩士論文,臺灣大學,台北,第7-44頁,1985。
[15]Barker, J. D., “A Superalloy for Medium Temperature,” Metal Process, Vol.5, pp.72-76, 1962.
[16]Kirman, I., and Warrington, D. H., “The Precipitation of Ni3Nb Phases in a Ni-Fe-Cr-Nb Alloy,” Metallurgical Transactions, Vol.1, pp.2667-2675, 1970.
[17]Quist, W. E., and Taggart, R., “The Influence of Iron and Aluminum on the Preciptitation of Metastable Ni3Nb Phases in the Ni-Nb System,” Metallurgical Transactions, Vol.2, pp.825-832, 1971.
[18]Cozar, R., and Pineal., “Morphology of γ" and γ´ Precipitates and Thermal Stability of Inconel 718 Type Alloys,” Metallurgical Transactions, Vol.4, pp.47-59, 1973.
[19]Oblak, J. M., and Daulonis, D. F., “Coherency Strengthening in the Ni Base Alloy Hardened by Do22 γ" Precipitates,” Metallurgical Transactions, Vol.5, pp.143-153, 1974.
[20]Chaturvedi, M. C., and Chung, D. W., “Yielding Benavior of a γ" Precipitation Strengthened Co Ni Cr Nb Fe Alloy,” Metallurgical Transactions A, Vol.12A, pp.77-81, 1981.
[21]Boesch, W. J., and Canada, H. B., “Precipitation Reactions and Stability of Ni3Cb in Inconel 718,” Journal of Metals, Vol.10, pp.34-39, 1969.
[22]Burer, J. A., and Hanind, D. K., “Heat Treating Nickel-Base Superalloy,” Metal Progress, Vol.7, pp.61-67, 1967.
[23]Azadian, S., Wei, L. Y., and Warren, R., “Delta Phase Precipitation in Inconel 718,” Materials Characterization, Vol.53, pp.7-16, 2004.
[24]Raghavan, M., “Precipitation in a Cu-30 Pct Ni-1 Pct Nb Alloy,” Metallurgical Transactions A , Vol.8A, pp.1071-1077, 1977.
[25]Moll, J. H., Maniar, G. N., and Muzyka, D. R., “The Microstructure of 706 a New Fe-Ni-Base Superalloy,” Metallurgical Transactions, Vol.2, pp.2143-2151, 1971.
[26]Muller, J. F., and Donachie, M. J., “The Effect of Solution and Intermediate Heat Treatments on the Notch-Rupture Behavior of Inconel 718,” Metallurgical Transactions A, Vol.6A, pp.2221-2227, 1975.
[27]曹正文,“Inconel 718 超合金之超塑性成形研究”,碩士論文,臺灣大學,台北,第56-61頁,1992。
[28]Mills. W. J., “The Effect of Heat Treatment on the Room Temperature and Elevated Temperature Fracture Toughness of Alloy 718,” Transactions of the ASME, Vol.102, pp.118-126, 1980.
[29]Stout, M. G., and Gerberich, W. W., “Structure/Property/Continuum Synthesis of Ductile Fracture in Inconel Alloy 718,” Metallurgical Transactions, Vol.9A, pp.649-657, 1978.
[30]Sims, C. T., “A Comtemportary View of Nickel-Base Superalloys,” Journal of Metals , Vol.10, pp.1119-1130, 1966.
[31]Sundararaman, M., Mukhopadhyay, P., and S, Banerjee., “Carbide Precipitation in Nickel Base Superalloys 718 and 625 and Their Effect on Mechanical Properties,” Superalloy 718,625,706 and Various Derivatives, TMS, pp.367-378, 1997.
[32]Gao, M., and Wei, R. P., “Grain Boundary Niobium Carbides in Inconel 718,” Scripita Materialia, Vol.37, pp.1843-1847, 1997.
[33]Duvall, D. S., and Owczarski, W. A., “Studies of Postweld Heat Treatment Cracking in Nickel-Base Alloy,” Journal of Welding, Vol.48, pp.10-22, 1969.
[34]林素嫻,“Inconel 718 超合金缺口拉伸性質及氫脆影響研究”,碩士論文,海洋大學,基隆,第6-12頁,2002。
[35]Aufderhaar, W. B., “Melting Inconel 718 by Vacuum Induction,” Metal Progress, Vol.6, pp.135-142, 1968.
[36]Stroup, J. P., and Heacox, R. A., “Effect of Grain Size Variations on the Long-Time Stability of Alloy 718,” Journal of Metals, Vol.11, pp.46-54, 1969.
[37]王維誠,“Inconel-718電漿銲接與熱處理特性研究”,碩士論文,臺灣大學,台北,第1-9頁,1985。
[38]Thamburaj, R., Wallace, W., and Goldak, J. A., “Post-Weld Heat-Treatment Cracking in Superalloys,” International Metals Reviews, Vol.28, pp.1-21, 1983.
[39]黃一晨,“反覆銲接與熱處理對Inconel-718鎳基超合金機械性質之研究”,碩士論文,臺灣大學,台北,第11-71頁,2005。
[40]Vincent, R., “Precipitation Around Welds in the Superalloy Nickel-Base Inconel 718,” Acta Metal, Vol.33, pp.1205-1215, 1985.
[41]Gordine, J., “Welding of Inconel 718,” Welding Journal, Vol.33, pp.531-537, 1970.
[42]Thompson, R. G., Cassimus, J. J., Mayo, D. E., and Dobbs, J. R., “The Relationship Between Grain and Microfissuring in Alloy 718,” Welding Journal, Vol.64, pp.91-96, 1985.
[43]Thompson, R. G., Dobbs, J. R., and Mayo, D. E., “The Effect of Heat Treatment on Microfissuring on Alloy 718,” Welding Journal, Vol.11, pp.299-304, 1986.
[44]Lingenfelter, A., “Welding of Inconel Alloy 718 : a Historical Overview,” Superalloy 718,625,706 and Various Derivatives, TMS, pp.673-683, 1989.
[45]David, S. A., Vitek, J. M., Babu, S. S., Boatner, L. A., and Reed, R. W., “Welding of Nickel-Base Superalloy Single Crystals,” Welding in the World, Vol.43, pp.6-16, 1999.
[46]莊瑛任、林義成,“鎳基合金的銲接裂縫”,銲接與切割期刊,第九卷,第四期,第39-43頁,1999。
[47]Radhakrishnan, B., and Thompson, R. G., “A Phase Diagram Approach to Study Liquation Cracking in Alloy 718,” Metallurgical Transactions A, Vol.22A, pp.887-902, 1991.
[48]Radhakrishnan, B., and Thompson, R. G., “Liquid Film Migration(LFM)in the Weld Heat Affected Zone,” Scripta Metallurgica, Vol.24, pp.537-542, 1990.
[49]詹恆毅,“過時效老化鎳基超合金Inconel 718銲補方法研究”,碩士論文,長庚大學,桃園,第32-42頁,2001。
[50]ASTM, Annual Book of ASTM Standards, MD, USA, Vol.03.02, pp.122-132, 1984.
[51]蔡智仁,“Ti-15V-3Cr-3Al-3Sn合金銲接特性之研究”,中正理工學院,桃園,碩士論文,第48-53頁,2005。
[52]柯賢文,腐蝕及其防制,全華科技圖書股份有限公司,台北,第68-75頁,1995年。
[53]Renhof, L., Guder, S., and Werner, E., “Hardness and Phase Analysis of IN718 Deformed at High Strain Rate,” Special Issue Paper, Vol.379, pp.619-621, 1991.
[54]Liu, Wenchang., Xiao, Furen., and Yao, Mei., “Quantitative Phase Analysis of Inconel 718 by X-Ray Diffraction,” Journal of Materials Science Letters, Vol.16 pp.769-771, 1997.
[55]趙台龍,“英高鎳718經超塑性成形之機械性能評估研究”,碩士論文,中正理工學院,桃園,第46-49頁,1995。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top