[1]李志聖,“Ti-6Al-4V合金銲接特性之研究”,碩士論文,國防大學中正理工學院兵器工程研究所,桃園,第18-36頁,2005。[2]賴耿陽,金屬鈦理論與應用,復漢(翰)出版社,台南,第31-37頁,1990。
[3]陳家暘,“脈衝電流對Ti-6Al-4V鈦合金銲道結構及機械性質影響性之研究”,碩士論文,大葉大學車輛工程學系研究所,彰化,第8-21頁,2003。[4]劉偉隆、林淳杰、曾春風、陳文照,物理冶金,全華科技,台北,第20-20、26、30頁,2002。
[5]Flower, H. M., “Microstructural Development in Relation to Hot Working of Titanium Alloys,”Materials Science and Technology, Vol. 6, pp. 1082-1092, 1990.
[6]王金友、葛志明、周彥邦,航空用鈦合金,上海科學技術出版社,上海,第133-179頁,1985。
[7]蔡智仁,“Ti-15V-3Cr-3Sn-3Al合金銲接特性之研究”,碩士論文,國防大學中正理工學院兵器工程研究所,桃園,第7-35頁,2005。[8]李成功、傅恒志、于翹,航空航天材料,國防工業出版社,北京,第42-46頁,2002。
[9]何光遠,機械工程手冊3-金屬材料,五南圖書出版社,台北,第6-43、44、49、50頁,2002。
[10]梁元彰,“熱機處理對Ti-6Al-4V相變態的影響”,碩士論文,國立台灣大學材料科學與工程學研究所,台北,第20頁,1999。[11]林宗翰,“Ti-6Al-4V合金熱軋變形行為及顯微組織研究”,碩士論文,國立中正大學機械系研究所,嘉義,第12頁,1998。[12]Metals Handbook 9th Edition, ASM internation, USA, Vol. 4, pp. 765-767, 1990.
[13]Fan, Z., “The β ω Transformation During Room Temperature Aging in Rapidly Solidified Ti-6Al-4V Alloy,” Scripta Metallurgica et Materialia, Vol. 31, pp. 1519-1524, 1994.
[14]Baeslack, W. A., and Banas, C. M.,“A Comparative Evaluation of Laser and Gas Tungsten Arc Weldments in High-Temperature Titanium Alloys,”Welding Research Supplement, pp. 121s-130s, 1981.
[15]王忠益,“鈦合金鑄件後製程之化學銑製及表面性質研究”,碩士論文,國立台北科技大學材料及資源工程系研究所,台北,第7頁,1999。[16]Sha, W., and Guo, Z.,“Phase Evoluyion of Ti-6Al-4V During Continuous Heating,”Journal of Alloys and Compounds, Vol. 290, pp. L3-L7, 1999.
[17]Malinov, S., Markovsky, P., Sha, W., and Guo, Z., “Reistivity Study and Computer Modelling of the Isothermal Transformation Kinetics of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.08Si Alloys,” Journal of Alloys and Compounds, Vol. 314, pp. 181-192, 2001.
[18]Ding, R., Guo, Z. X., and Wilson, A., “Microstructural Evolution of a Ti-6Al-4V Alloy During Thermomechanical Processing,” Materials Science and Engineering A, Vol. A327, pp. 233-245, 2001.
[19]Manero, J. M., Gil, F. J., and Planell, J. A., “Deformation Mechananisms of Ti-6Al-4V Alloy with a Martensitic Microstructure Subjected to Oligocyclic Fatigue,” Acta Materialia, Vol. 48, pp. 3353-3359, 2000.
[20]黃佳貴,“Ti-6Al-4V合金對Ag-Cu基活性填料硬銲接合性之研究”,碩士論文,中華大學機械與航空太空工程研究所,新竹,第71頁,1999。[21]Filip, R., Kubiak, K., Ziaja, W., and Sieniawaki, J., “The Effect of Microstructure on the Mechanical Properties of Two-Phase Titanium Alloys,” Materials Processing Technology, Vol. 133, pp. 84-89, 2003.
[22]Ahmed, T., and Rack, H. J., “Phase Transformations During Cooling in a+b Titanium Alloys,” Materials Science and Engineering A, Vol. A243, pp. 206-211, 1998.
[23]Ding, R., and Guo, Z. X., “Microstructural Evolution of a Ti-6Al-4V Alloy During b-phase Processing: Experimental and Simulative Investigations,” Materials Science and Engineering A, Vol. A365, pp. 172-179, 2004.
[24]陳學人,“Ti-6Al-4V合金之相變態特性與組織分析”,碩士論文,國立台灣大學材料科學與工程學研究所,台北,第14-16頁, 2001。[25]陳明謙,“Ti-6Al-4V各種不同組織的拉伸破壞行為觀察”,碩士論文,國立台灣大學材料科學與工程學研究所,台北,第8-10頁,1999。[26]Mishin, Y., and Herzig, C., “Overview NO. 136 Diffusion in the Ti-Al System,” Acta Materialia, Vol. 48, pp. 589-623, 2000.
[27]Djanarthany, S., Viala, J. C., and Bouix, J., “An Overview of Monolithic Titanium Aluminides based on Ti3Al and TiAl,” Materials Chemistry and Physics, Vol. 72, pp. 301-319, 2001.
[28]Welsch, G., Lutjering, G., Gazioglu, K., and Bunk, W., “Deformation Characteristics of Age Hardened Ti-6Al-4V,” Metallurgical Transactions A, Vol. 8A, pp. 169-177, 1977.
[29]周長彬、蔡丕樁、郭央甚,銲接學,全華科技圖書股份有限公司,台北,第48-92頁,1991。
[30]Greenfield, M. A., and Duvall, D. S., “Welding of an Advanced High Strength Titanium Alloy,” Welding Reserch Supplement, pp. 73s-80s, 1975.
[31]Wang, S. H., Wei, M. D., and Tasy, L. W., “Tensile Properties of LBW Welds in Ti-6Al-4V Alloy at Evaluated Temperatures Belows 450℃,” Materials Letters, Vol. 57, pp. 1815-1823, 2003.
[32]Zhou, W., and Chew, K. G., “Effect of Welding on Impact Toughness of Butt-Joint in a Titanium Alloy,” Materials Science and Engineering A, Vol. A347, pp. 180-185, 2003.
[33]Thomas, G., Ramachandra, V., Nair, M. J., Nagarajan, K. V., and Vasudevan, R., “Effect of Preweld and Postweld Heat Treatment on the Properties of GTA Welds in Ti-6Al-4V Sheet,” Welding Research Supplement, pp. 15s-20s, 1992.
[34]Borggreen, K., and Wilson, I., “Use of Postweld Heat Treatment to Improve Ductility in Thin Sheets of Ti-6Al-4V,” Welding Research Supplement, pp. 1s-9s, 1980.
[35]Mazumder, J., and Steen, W. M., “Microstructure and Mechanical Properties of Laser Welded Titanium 6Al-4V,” Metallurgical Transactions A, Vol. 13A, pp. 865-871, 1982.
[36]Oh, J., Kim, N. J., Lee, S., and Lee, E. W., “Correlation of Fatigue Properties and Microstructure in Vestment Cast Ti-6Al-4V Welds,” Materials Science and Engineering A, Vol. A340, pp. 232-242, 2003.
[37]Hunter, G. B., Hodi, F. S., and Eager, T. W., “High Cycle Fatigue of Weld Repaired Cast Ti-6Al-4V,” Metallurgical Transactions A, Vol. 13A, pp. 1589-1594, 1982.
[38]Mahajan, Y., and Baeslack, W. A., “Transgranular Fracture of Heat-Treated Weldments in a High-Strength Alpha-Beta Titanium Alloy,” Scripta Metallurgica, Vol. 13, pp. 1125-1129, 1979.
[39]Hallum, D. L., and Baeslack, W. A., “Nature of Grain Refinement in Titanium Alloy Welds by Microcooler Inoculation,” Welding Reserch Supplement, pp. 326s-336s, 1990.
[40]Yunlian, Q., Ju, D., Quan, H., and Liying, Z., “Electron Beam Welding, Laser Beam Welding and Gas Tungsten Arc Welding of Titanium Sheet,” Materials Science and Engineering A, Vol. A280, pp. 171-181, 2000.
[41]Denney, P. E. and Metzbower, E. A., “Laser Beam Welding of Titanium,” Welding Research Supplement, pp. 343s-347s, 1989.
[42]Murthy, K. K., and Sundaresan, S., “Fracture Toughness of Ti-6Al-4V After Welding and Postweld Heat Treatment,” Welding Research Supplement, pp. 81s-91s, 1997.
[43]Mishra, S., and Debroy, T., “Measurements and Monte Carlo Simulation of Grain Growth in the Heat-Affected Zone of Ti-6Al-4V Welds,” Acta Materialia, Vol. 52, pp. 1183-1192, 2004.
[44]吳會強、馮吉才、何景山、張秉剛,“Ti-6Al-4V電子束焊接焊縫區域精細組織特徵”,航空材料學報,第25卷,第三期,第21-24頁,2005。
[45]Semiatin, S. L., Fagin, P. N., Glavicic, M. G., Sukonnik, I. M., and Ivasishin, O. M., “Influence on Texture on Beta Grain-Growth During Continuous Annealing of Ti-6Al-4V,” Materials Science and Engineering A, Vol. A299, pp. 225-234, 2001.
[46]Gil, F. J., Manero, J. M., Ginebra, M. P., and Planell, J. A., “The Effect of Cooling Rate on the Cyclic Deformation of b-Annealed Ti-6Al-4V,” Materials Science and Engineering A, Vol. A349, pp. 150-155, 2003.