跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/09 08:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:程文仁
研究生(外文):CHENG WEN JEN
論文名稱:以均溫雙置換法製備Ni/Pd共觸媒進行低溫成長奈米碳管之研究
論文名稱(外文):Low Temperature Growth of Carbon Nanotubes by Thermal Chemical Vapor Deposition Using Galvanic Displacement Deposited Ni/Pd Co-catalysts
指導教授:劉 益 銘
指導教授(外文):Yih-Ming Liu
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:兵器系統工程研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:80
中文關鍵詞:均溫雙置換法奈米碳管
外文關鍵詞:Galvanic DisplacementCarbon NanotubesNi/Pd Co-catalysts
相關次數:
  • 被引用被引用:4
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要分為兩部分,首先是採用非均溫化學析鍍法製備鎳磷及鎳鈀磷觸媒,以熱裂解化學氣相沉積法來成長奈米碳管,成長期間不通入氨氣,藉以與前期實驗室學長所作有通入氨氣之研究成果加以比較,結果顯示有通入氨氣成長之碳管管徑較細,而且能夠降低成長溫度至400°C。
此外,研究中並以利用金屬離子與基材電位差原理,製程簡單且易於放大析鍍面積之均溫化學置換法製備鎳及鎳鈀觸媒來成長奈米碳管,實驗中以XRD與ESCA對鎳鈀共觸媒進行成分定性及化學鍵結分析,並分別探討觸媒析鍍時間、觸媒置換順序及成長溫度對碳管成長形貌和結構的影響。實驗結果顯示鎳觸媒置換時間增加會增大觸媒粒徑大小,進而影響碳管成長後之管徑;奈米碳管成長的密度、形貌及結構亦隨著鎳鈀置換順序及成長溫度的不同而改變。由穿透式電子顯微鏡觀察可知,700°C時可成長出中空管徑且結構良好之奈米碳管,管徑約30~40nm,600°C時成長之奈米碳管中空管徑不明顯且管壁結構較差,管徑約50~80nm,500°C時則成長出實心狀奈米碳纖維,管徑約100~150nm。另外,由拉曼光譜儀及I−V檢測結果顯示,溫度700°C成長之奈米碳管有較好之生長結構及場發射效應。
The thesis includes two main sections. First, the carbon nanotubes (CNTs) were synthesized using Ni-P alloy catalysts or Ni-Pd-P co-catalysts, which were deposited on silicon wafer with non-isothermal deposition method (NITD), and thermal chemical vapor deposition (TCVD) with acetylene gas. Ammonia gas was not used in this synthesizing process to be compared with the prior work where ammonia has been used, which was done by another postgraduate. The result shows that CNTs grown with NH3 have more narrow diameters than those grown without NH3. The CNT growth temperature can be lowered to 400℃ with NH3 in the synthesizing process, whereas, without NH3, only carbon fibers have grown when the growing temperature was lower than 500℃.
Second, the CNTs were grown with TCVD using galvanic displacement deposited Ni catalysts or Ni-Pd co-catalysts. Chemical composition of the Ni-Pd co-catalysts was evaluated qualitatively and quantitatively using XRD and ESCA respectively. The effects of deposition time, displacement sequence of Ni and Pd, and the growth temperature on the morphology and structure of the synthesized CNTs were also evaluated. The result indicates that the sizes of the Ni catalysts increased with the increasing of displacement time. And the diameters of grown CNTs were affected by the sizes of the Ni catalysts. The density, morphology and structure of the synthesized CNTs were also strongly dependent on the displacement sequence of Ni/Pd catalysts and the growth temperature. The high-resolution transmission electron microscopy (HRTEM) observation shows that there existed different products at the growth temperature of 500C, 600C and 700C. At 700C, hollow and well-structured CNTs with diameter of 30 to 40 nm were obtained. At 600C, it was found that the inner hollow tubes of the synthesized CNTs were unclear, and the crystalline structure of these CNTs became inferior. The diameter of the CNTs grown at 600C was range from 50 to 80nm. Carbon nano-fibers (CNFs), which have the diameter of 100 to 1500 nm, were produced when the growth temperatures was lowered to 500C. Besides, Raman analysis and I−V test also indicates that the field emission efficiency and the crystalline structure of the CNTs synthesized at 700C were better than others.
目錄

誌謝 ii
摘要 iii
ABSTRACT iv
目錄 vi
表目錄 ix
圖目錄 x
1. 序論 1
1.1 前言 1
1.2 研究動機與目的 1
2. 文獻回顧與理論基礎 7
2.1 奈米碳管發展歷史簡介 7
2.2 奈米碳管的結構 7
2.3 奈米碳管的各種特殊性質 10
2.3.1 機械特性 10
2.3.2 電性 10
2.3.3 熱穩定性、熱導性及熱膨脹性 11
2.3.4 場發射性質 12
2.4 奈米碳管的製備方法 15
2.4.1 電弧放電法 16
2.4.2 雷射剝蝕法 17
2.4.3 太陽能法 18
2.4.4 化學氣相沉積法 19
2.4.5 觸媒催化熱裂解法 22
2.5 奈米碳管之成長機制與模式 24
2.5.1 化學氣相沉積法(CVD)原理 24
2.5.2 奈米碳管之成長機制 26
2.5.3 奈米碳管之成長模式 28
2.6 化學鍍製備觸媒微點方式 29
2.7 低溫生長奈米碳管之方法 31
2.8 奈米碳管之應用 32
2.8.1 複合材料中的應用 33
2.8.2 掃描探針顯微鏡的探針 34
2.8.3 電磁性能的應用 35
2.8.4 場發射性能的應用 35
2.8.5 氫氣儲存及鋰離子電池 37
3. 實驗設備與實驗方法 38
3.1 實驗設備 38
3.1.1 非均溫化學析鍍設備 38
3.1.2 均溫置換法設備 38
3.1.3 熱裂解化學氣相沉積設備 39
3.1.4 檢測分析儀器 41
3.2 實驗方法 44
3.2.1 實驗流程規劃 44
3.2.2 樣品製備 45
4. 結果與討論 47
4.1 以非均溫化學析鍍法及均溫置換法製備鎳磷及鎳鈀磷觸媒生長奈米碳管 47
4.1.1 非均溫析鍍時間、生長溫度及鈀觸媒對奈米碳管生長之影響 47
4.1.2 氨氣對奈米碳管生長之影響 51
4.1.3 小結 54
4.2 以均溫置換法製備鎳及鎳鈀共觸媒進行奈米碳管之成長 55
4.2.1 鎳鈀共觸媒之形貌觀察及檢測分析 55
4.2.2 不同觸媒置換條件對奈米碳管生長之影響 61
4.2.3 成長溫度對鎳及鈀/鎳共觸媒生長奈米碳管之影響 64
4.2.4 奈米碳管TEM觀察分析 68
4.2.5 奈米碳管之場發射性能測試 70
4.2.6 小結 71
5. 結論 73
參考文獻 74
自傳………………………………………………………………………………….80
[1] 國立成功大學微奈米科技研究中心,“奈米碳管簡介”,機械工業雜誌,第242期,第230頁,2003。
[2] 成會明、張勁燕,奈米碳管,五南圖書出版公司,台北,第2頁,2004。
[3] 顧鴻壽、周本達、陳密、張德安、樊雨心、周宜衡,平面平版顯示器基本概論,高立圖書,台北,第13頁,2004。
[4] Iijima, S., “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, pp. 56-58, 1991.
[5]http://203.66.161.5/document/mic_digi/Topology/report_topology/IT/2003/030724nami.pdf
[6] 賴詩文、邱正茂、林正豐,“場發射平面光源技術”,工業材料雜誌,第221期,第117-118頁,2005。(http://www.materialsnet.com.tw)
[7] Kim, J. M., Choi, W. B., Lee, N. S., and Jung, J. E., “Field Emission from Carbon Nanotubes for Displays,” Diamond and Related Materials, Vol. 9, pp. 1184-1189, 2000.
[8] 成會明、張勁燕,奈米碳管,五南圖書出版公司,台北,第428-429頁,2004。
[9] 楊素華、藍慶忠,“奈米碳管場發射顯示器”,科學發展,第382期,第69-71頁,2004。
[10]陳秀娟,“奈米碳管場發射顯示技術”,工業技術與資訊,第136期,第5頁,2003。
[11]Seidel, R., Duesberg, G. S., Unger, E., Graham, A. P., Liebau, M., and Kreupl, F., “Chemical Vapor Deposition Growth of Single-Walled Carbon Nanotubes at 600°C and a Simple Growth Model,” J. Phys. Chem. B, Vol. 108, pp. 1888-1893, 2004.
[12]Han, J. H., Yoo, J. E., and Lee, C. J., “Low Temperature Synthesis of Carbon Nanotubes by Thermal Chemical Vapor Deposition using Co-catalyst,” Journal of the Korean Physical Society, Vol. 39, pp. S116-S119, 2001.
[13]林依萍、陳世溥、蕭清松、莊佳智,“不同緩衝層對奈米碳管垂直性與場發射性之影響”,中國材料科學學會2004年年會論文集,新竹,第246頁,2004。
[14]謝昀朔、陳宜君、鄭秀鳳、林諭男,“以微波電漿輔助氣相沈積法改變不同碳源成長奈米碳管研究”,中國材料科學學會2004年年會論文集,新竹,第1頁,2004。
[15]高騏、丁志華、陳守得,“以微波電漿化學氣相沈積法低溫合成奈米碳管”,中國機械工程學會第二十一屆全國學術研討會論文集,高雄,第5389頁,2004。
[16]Sung, Y., Ger, M. D., and Chou, Y. H., “Novel Route to Deposit Metallic Dot Array or Thin Film on The Conduction and Insulating Substrates,” J. Mat. Sci. Lett., Vol. 22, pp. 1515-1518, 2003.
[17]王翰韜,以化學氣相沉積法低溫製備奈米碳管之研究,碩士論文,國防大學中正理工學院兵器系統工程研究所,桃園,第23-64頁,2005。
[18]成會明、張勁燕,奈米碳管,五南圖書出版公司,台北,第23頁,2004。
[19]成會明、張勁燕,奈米碳管,五南圖書出版公司,台北,第24頁,2004。
[20]http://www.chemnet.com.tw/magazine/200208/index5.htm
[21]Dresselhaus, M. S., Dresselhaus, G., and Saito, R., “Physics of Carbon Nanotubes,” Carbon, Vol. 33, No. 7, pp. 883-891, 1995.
[22]Hamada, N., Sawada, S., and Oshiyama, A., “New One-Dimensional Conductors: Graphitic Microtubules,” Phys. Rev. Lett., Vol. 68, No. 10, pp. 1579-1581, 1992.
[23]Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M. S., “Electronic Structure of Chiral Graphene Tubules,” Appl. Phys. Lett., Vol. 60, No. 18, pp. 2204-2206, 1992.
[24]Xie, S., Li, W., Pan, Z., Chang, B., and Sun, L., “Mechanical and Physical Properties on Carbon Nanotube,” Journal of Physics and Chemistry of Solids, Vol. 61, pp. 1153-1158, 2000.
[25]成會明、張勁燕,奈米碳管,五南圖書出版公司,台北,第387頁,2004。
[26]國立成功大學微奈米科技研究中心,“奈米碳管簡介”,機械工業雜誌,第242期,第233-234頁,2003。
[27]成會明、張勁燕,奈米碳管,五南圖書出版公司,台北,第420-422頁,2004。
[28]Lau, K. T., and Hui, D., “The Revolutionary Creation of New Advanced Materials-Carbon Nanotube Composites,” Composites : Part B, Vol. 33, pp. 263-277, 2002.
[29]Laplaz, D., Bernier, P., Flamant, G., Lebun, M., Brunelle, A., and Della, S., “Solar Energy: Application to the Production of Fullerenes,” J. Phys. B : At. Mol. Opt. Vol. 29, pp. 4943-4954, 1996.
[30]簡逸朋,以多孔矽基板成長奈米碳管之研究,碩士論文,中原大學應用物理研究所,桃園,第8-9頁,2002。
[31]Huang, Z. P., Xu, J. W., Ren, Z. F., Wang, J. H., Siegal, M. P., and Provencio, P. N., “Growth of Highly Oriented Carbon Nanotubes by Plasma-enhanced Hot Filament Chemical Vapor Deposition,” Appl. Phys. Lett., Vol. 73, pp. 3845-3847, 1998.
[32]郭正次、蔡明和、林兆焄、張惠林,“共價鍵材料場效發射顯示技術之研究(II)”,2001年中華民國鍍膜科技研討會暨國科會計劃研究成果發表會論文集,彰化,第167-170頁,2001。
[33] Ivanov, V., Nagy, J. B., Lambin, Ph., Lucas, A., Zhang, X. B., Zhang, X. F., Bernaerts, D., Tendeloo, G. V., Amelinckx, S., and Landuyt, J. V., “The Study of Carbon Nanotubules Produced by Catalytic Method,” Chem. Phys. Lett., Vol. 223, pp. 329-335, 1994.
[34] Sen, R., Govindaraj, A., and Rao, C. N. R., “Carbon Nanotubes by Metallocene Route,” Chem. Phys. Lett., Vol. 267, pp. 276-280, 1997.
[35] Cheng, H. M., Li, F., Su, G., Pan, H. Y., He, L. L., Sun, X., and Dresselhaus, M. S., “Large-Scale and Low-Cost Synthesis of Single-Walled Carbon Nanotubes by The Catalytic Pyrolysis of Hydrocarbons,” Appl. Phys. Lett., Vol. 72, No. 25, pp. 3282-3284, 1998.
[36] http://nano.mse.ttu.edu.tw/html/doc/Class02_produ/4.pdf
[37] Yacaman, M. J., Yoshida, M. M., Rendon, L., and Santiesteban, J. G., “Catalytic Growth of Carbon Microtubules with Fullerene Structure,” Appl. Phys. Lett., Vol. 62, pp. 202-204, 1993.
[38] 莊鎮宇,奈米碳管在熱裂解化學氣相沉積法中的成長機制研究,博士論文,國立清華大學工程與系統科學系,新竹,第24頁,2004。
[39] Lee, C. J., Park, J., Kim, J. M., Huh, Y., Lee. J. Y., and No, K. S., “Low–Temperature Growth of Carbon Naotubes by Thermal Chemocal Vapor Deposition Using Pd, Cr, and Pt as Co-Catalyst,” Chem. Phys. Lett., Vol. 327, pp. 277-283, 2000.
[40] Huang, S., and Mau, A. W. H., “3D Carbon Nanotube Architectures on Glass Substrate by Stamp Printing Bimetallic Fe-Pt/Polymer Catalyst,” J. Phys. Chem. B, Vol. 107, pp. 8285-8288, 2003.
[41] 成會明、張勁燕,奈米碳管,五南圖書出版公司,台北,第42-43頁,2004。
[42] Larsen, T., Moloni, K., Flack, F., Eriksson, M. A., Lagally, M. G., and Black, C. T., “Comparison of Wear Characteristics of Etched-Silicon and Carbon Nanotube Atomic-Force Microscopy Probes,” Applied Physics Letters, Vol. 80, No. 11, pp. 1996-1998, 2002.
[43] 成會明、張勁燕,奈米碳管,五南圖書出版公司,台北,第314頁,2004。
[44] 成會明、張勁燕,奈米碳管,五南圖書出版公司,台北,第361-363頁,2004。
[45] 成會明、張勁燕,奈米碳管,五南圖書出版公司,台北,第456-457頁,2004。
[46] Chen, Y., Shaw, D. T., Bai, X. D., Wang, E. G., Lund, C., Lu, W. M., and Chung, D. D. L., “Hydrogen Storage in Aligned Carbon Nanotubes,” Applied Physics Letters, Vol. 78, No. 15, pp. 2128-2130, 2001.
[47] 謝美君,非均溫無電鍍法在基材上製備鎳磷金屬微點,碩士論文,國防大學中正理工學院應用化學研究所,桃園,第25-39頁,2004。
[48] Kukovitsky, E. F., L’vov, S. G., Sainov, N. A., Shustov, V. A., and Chernozatonskii, L. A., “Correlation Between Metal Catalyst Particle Size and Carbon Nanotube Growth,” Chemical Physics Letters, Vol. 355, pp. 497-503, 2002.
[49] Jeong, H. J., Jeong, S. Y., Shin, Y. M., Han, J. H., Lim, S. C., Eum, S. J., Yang, C. W., Kim, N., Park, C. Y., and Lee, Y. H., “Dual-Catalyst Growth of Vertically Aligned Carbon Nanotubes at Low Temperature in Thermal Chemical Vapor Deposition,” Chem. Phys. Lett., Vol. 361, pp. 189-195, 2002.
[50] Choi, Y. C., Kim, D. W., Lee, T. J., Lee, C. J., and Lee, Y. H., “Growth Mechanism of Vertically Aligned Carbon Nanotubes on Silicon Substrates,” Synthetic Metals, Vol. 117, pp. 81-86, 2001.
[51] Lee, C. J., Kim, D. W., Lee, T. J., Choi, Y. C., Park, Y. S., Lee, Y. H., Choi, W. B., Lee, N. S., and Kim, J. M., “Synthesis of Aligned Carbon Nanotubes Using Thermal Chemical Vapor Deposition,” Chem. Phys. Lett., Vol. 312, pp. 461-468, 1999.
[52] Lee, S. K., Jeon, Y. C., and Joo, S. K., “Pd Induced Lateral Crystallization of Amorphous Si Thin Films,” Appl. Phys. Lett., Vol. 66, No. 13, pp. 1671-1673, 1995.
[53] Casalis, L., Casati, C., Rosei, R., and Kiskinova, M., “Surface Structures of Some Stages Preceding Formation of A Pd2Si Phase,” Surface Science, Vol. 331-333, pp. 381-388, 1995.
[54] Bennett, P. A., DeVries, B., Robinson, I. K., and Eng, P. J., “Layerwise Reaction at a Buried Interface,” Physical Review Letters, Vol. 69, No. 17, pp. 2539-2542, 1992.
[55] Longo, C., Sumodjo, P. T. A., and Sanz, F., “Displacement Deposition of Sn from Fluoride Solutions on Pd Predeposited (100) Si Substrate,” J. Electrochem. Soc., Vol. 144, No. 5, pp. 1659-1663, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top