跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:f3de:de2a:940c:ec8b) 您好!臺灣時間:2024/12/10 07:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邢宗明
研究生(外文):Tsung-Ming Hsing
論文名稱:引擎汽缸基材以熔射塗層改質之磨耗特性研究
指導教授:侯光煦侯光煦引用關係
指導教授(外文):Kung-Hsu Hou
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:兵器系統工程研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:106
中文關鍵詞:高速燃氧熔射塗層磨耗阻抗
外文關鍵詞:High Velocity Oxy-Fuel SprayCoatingsWear resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:306
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
新一代車輛引擎必需具備低摩擦能損失、耐久且更輕量化。此一目標需藉由磨潤元件最佳化設計及選用適合的材料來達成。高速燃氧熔射(HVOF, High Velocity Oxy-Fuel Spray)技術具有高黏附力、低孔隙率及高耐磨性等優點,HVOF熔噴塗層可能具有改善戰鬥載具引擎磨耗阻抗的潛能。
本研究選用HVOF技術熔射製備WC-Co、Ni-W及Ni-Cr塗層,磨耗實驗採銷對盤(Pin On Disk)型式在無潤滑狀況下進行測試,試件是以預混粉末法(Pre-Blend)熔射製備WC-Co、Ni-W及Ni-Cr塗層並噴覆於鋼盤材上,銷(或接觸表面)的材料以Ni-Diamond鍍層、WC-Co塗層與鋼材等不同材料,並在溫度25~300℃的條件下進行磨耗測試。
實驗結果顯示Ni-Diamond銷對各類塗層磨耗,Ni-W及Ni-Cr塗層的耐磨性隨溫度增加而減少,但WC-Co塗層的耐磨性卻隨溫度增加而增加,於300℃的高溫磨耗阻抗排序WC-Co>Ni-W≒Ni-Cr。WC-Co/WC-Co對磨時WC-Co盤塗層的磨損則遠低於Ni基塗層的磨損,特別是溫度昇高至300℃時。SUJ2鋼銷對各類塗層於常溫摩擦試驗顯示,盤試件的磨損以WC-Co塗層最少,其耐磨性提昇約為SC45鋼材的20倍。
本研究顯示對於高溫滑動摩擦,WC-Co塗層比Ni塗層耐磨性佳,在引擎基材材料改質上可以選擇此一材料。
A new generation vehicle engine should be with low friction energy loss, long lifetime and more lightweights. This goal can be accomplished through an optimal tribo-components design and suitable material selection for the engine. The HVOF thermal spraying coatings have the advantages of high adhesive force, low fraction of cavity and high wear resistance. The HVOF spraying coatings perhaps have the potential for use to improve the wear-resistance of the armed vehicle’s engine.
In this research, HVOF technique was selected to manufacture the wear-resisting WC-Co, Ni-W and Ni-Cr coatings. The Pin on Disk tribo-pairs type was used in the wear tests under no lubricants conditions. These WC-Co, Ni-W and Ni-Cr coatings are obtained by pre-blend injection method and coated on cast ion disk. The different materials such as Ni-Diamond coatings, WC-Co coatings, and steel were serve as the pin (or contact surface) materials, and to carry out wear tests under 25 ~300℃.
The wear results of Ni-Diamond pin vs. each kind of coatings show that wear-resistance of Ni-W and Ni-Cr coatings were decreased with increasing temperature, but the wear-resistant of WC-Co coating was increased with increasing temperature. At 300℃, the order of wear-resistance is sort as WC-Co>Ni-W≒Ni-Cr. The wear loss of WC-Co coating was more less than the Ni-based coatings that under the WC-Co pin vs. WC-Co coatings disk, especially when the temperature was raised to 300℃. The results of SUJ2 steel pin vs. each kind of coatings under normal temperature showed that the WC-Co coating with the lowest wear loss which wear-resistance raised 20 times of SC45 steel material.
This study was shown that WC-Co coating is better than Nickel coatings that for used at higher temperature sliding friction. This kind material can be selected to use in engine-based material modification.
目錄

誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 viii
圖目錄 ix
1. 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 1
1.3 研究相關理論 2
1.3.1 磨耗動力學 2
1.3.2 磨耗類型 3
1.3.3 引擎缸體材質簡介 4
1.3.4 提昇汽缸壁耐磨性方法概述 4
1.4 研究方法 7
2. 文獻探討 12
2.1 鎳基熱熔射塗層 12
2.2 碳鎢-鈷熱熔射塗層 15
3. 實驗設備、方法與步驟 20
3.1 實驗設備 20
3.2 實驗方法與步驟 21
3.2.1 磨耗試件 21
3.2.2 熔射塗層與鑄鋼耐磨耗試驗方法與步驟 21
3.3 實驗數據分析及相關參數定義 22
4. 實驗結果與討論 27
4.1 鎳-鉻(Ni-Cr)自熔合金熱熔射塗層 27
4.1.1 鎳-鉻塗層性質分析 27
4.1.2 Ni-Dia.800/Ni-Cr對磨組摩擦係數結果與分析 28
4.1.3 Ni-Dia.800/Ni-Cr對磨組表面磨耗型態觀查與分析 28
4.1.4 WC-Co /Ni-Cr對磨組摩擦係數結果與分析 29
4.1.5 WC-Co /Ni-Cr對磨組表面磨耗型態觀查與分析 29
4.1.6 Ni-Cr塗層的體積磨耗損失及磨耗機制 30
4.2 鎳-鎢(Ni-W)自熔合金熱熔射塗層 46
4.2.1 鎳-鎢塗層性質分析 46
4.2.2 Ni-Dia.325/Ni-W對磨組摩擦係數結果與分析 46
4.2.3 Ni-Dia.325/Ni-W對磨組表面磨耗型態觀查與分析 47
4.2.4 WC-Co /Ni-W對磨組摩擦係數結果與分析 48
4.2.5 WC-Co /Ni-W對磨組表面磨耗型態觀查與分析 48
4.2.6 Ni-Dia.800/Ni-W對磨組摩擦係數結果與分析 49
4.2.7 Ni-Dia.800/Ni-W對磨組表面磨耗型態觀查與分析 49
4.2.8 Ni-W塗層的體積磨耗損失及磨耗機制 50
4.3 碳鎢-鈷(WC-Co)熱熔射塗層 72
4.3.1 碳鎢-鈷塗層性質分析 72
4.3.2 Ni-Dia.800/WC-Co對磨組摩擦係數結果與分析 72
4.3.3 Ni-Dia.800/WC-Co對磨組表面磨耗型態觀查與分析 73
4.3.4 WC-Co/WC-Co對磨組摩擦係數結果與分析 74
4.3.5 WC-Co/WC-Co對磨組表面磨耗型態觀查與分析 74
4.3.6 WC-Co塗層的體積磨耗損失及磨耗機制 75
4.4 SUJ2鋼銷對SC45鋼材及Ni-Cr,Ni-W及WC-Co等塗層之摩擦測試 90
4.4.1 SUJ2鋼銷對鑄鋼及熔射塗層的摩擦係數曲綫 90
4.4.2 SUJ2鋼銷對鑄鋼及塗層對磨組的磨耗顯微結構及EDX分析 90
4.4.3 鑄鋼及塗層的體積磨耗損失比較 91
5. 結 論 100
參考文獻 102
自 傳 106

表目錄

表4. 1 HVOF熔射鎳-鉻自熔合金 (Nickel-Chromium Self-Fluxing Alloy) 塗層製程參數 32
表4. 2 鎳-鉻起始顆粒原料性質 32
表4. 3 HVOF熔射鎳-鎢自熔合金(Nickel- Tungsten Self-Fluxing Alloy)塗層製程參數 52
表4. 4 鎳-鎢原料顆粒化學性質 52
表4. 5 HVOF 熔射碳鎢-鈷(Tungsten Carbide-12% Cobalt)塗層製程參數 76
表4. 6 碳鎢-鈷起始顆粒原料性質 76
表4. 7 對磨試件分類 76
表4. 8 SUJ2軸承鋼化學性質 92
表4. 9 SC45鑄鋼化學性質 92


圖目錄

圖1. 1 (a)AVDS 1790戰車引擎缸體(b)AVDS 1790引擎本體破裂(c)DDC 6V53T引擎曲軸斷裂 9
圖1. 2 磨耗基本類型及其各種形式[4] 10
圖1. 3 HVOF技術製程設備圖 11
圖1. 4 塗層噴覆基材表面示意圖 11
圖3. 1 多功能迴轉式磨耗試驗機 23
圖3. 2 研磨拋光機 23
圖3. 3 超音波清洗機 24
圖3. 4 烘乾機 24
圖3. 5 精密電子天秤 24
圖3. 6 維氏硬度機 25
圖3. 7 掃描式電子顯微鏡(SEM)及能量散佈光譜儀(EDX) 25
圖3. 8 (a)銷對盤(Pin On Disk)對磨件示意圖 (b)銷對盤形狀、尺寸示意圖 26
圖3. 9 高溫300℃磨耗實驗加熱、磨耗實驗與降溫程序控制圖 26
圖4. 1 (a)Ni-Cr 粉體SEM形貌(b)EDX檢測分析圖 32
圖4. 2 Ni-Cr 塗層及Ni-Dia. 800 Pin SEM表面形貌 33
圖4. 3 Ni-Cr 塗層及Ni-Dia. 800 Pin SEM橫截面形貌 34
圖4. 4 Ni-Dia. 800 Pin / Ni-Cr 塗層平均摩擦係數曲線圖 35
圖4. 5 Ni-Dia.800 Pin / Ni-Cr (25℃) 對磨組表面磨損形態及EDX分析 36
圖4. 6 Ni-Dia.800 Pin / Ni-Cr (100℃) 對磨組表面磨損形態及EDX分析 37
圖4. 7 Ni-Dia.800 Pin / Ni-Cr (200℃) 對磨組表面磨損形態及EDX分析 38
圖4. 8 Ni-Dia.800 Pin / Ni-Cr (300℃) 對磨組表面磨損形態及EDX分析 39
圖4. 9 WC-Co Pin / Ni-Cr 塗層平均摩擦係數曲線圖 40
圖4. 10 WC-Co Pin / Ni-Cr (25℃) 對磨組表面磨損形態及EDX分析 41
圖4. 11 WC-Co Pin / Ni-Cr (100℃) 對磨組表面磨損形態及EDX分析 42
圖4. 12 WC-Co Pin / Ni-Cr (200℃) 對磨組表面磨損形態及EDX分析 43
圖4. 13 WC-Co Pin / Ni-Cr (300℃) 對磨組表面磨損形態及EDX分析 44
圖4. 14 Ni-Cr塗層體積磨耗損失(a)(Dia. #800 /Ni-Cr)(b)(WC-Co / Ni-Cr) 45
圖4. 15 (a)Ni-W粉體SEM形貌(b)EDX檢測分析圖 52
圖4. 16 Ni-W 塗層及Ni-Dia. 325 Pin SEM表面形貌 53
圖4. 17 Ni-W 塗層及Ni-Dia. 325 Pin SEM橫截面形貌 54
圖4. 18 Ni-Dia. 325 Pin / Ni-W 塗層平均摩擦係數曲線圖 55
圖4. 19 Ni-Dia.325 Pin / Ni-W (25℃) 對磨組表面磨損形態及EDX分析 56
圖4. 20 Ni-Dia.325 Pin / Ni-W (100℃) 對磨組表面磨損形態及EDX分析 57
圖4. 21 Ni-Dia.325 Pin / Ni-W (200℃) 對磨組表面磨損形態及EDX分析 58
圖4. 22 Ni-Dia.325 Pin / Ni-W (300℃) 對磨組表面磨損形態及EDX分析 59
圖4. 23 WC-Co Pin / Ni-W 塗層平均摩擦係數曲線圖 60
圖4. 24 WC-Co Pin / Ni-W (25℃) 對磨組表面磨損形態及EDX分析 61
圖4. 25 WC-Co Pin / Ni-W (100℃) 對磨組表面磨損形態及EDX分析 62
圖4. 26 WC-Co Pin / Ni-W (200℃) 對磨組表面磨損形態及EDX分析 63
圖4. 27 WC-Co Pin / Ni-W (300℃) 對磨組表面磨損形態及EDX分析 64
圖4. 28 Ni-Dia.800 Pin / Ni-W 塗層平均摩擦係數曲線圖 65
圖4. 29 Ni-Dia.800 Pin / Ni-W (25℃) 對磨組表面磨損形態及EDX分析 66
圖4. 30 Ni-Dia.800 Pin / Ni-W (100℃) 對磨組表面磨損形態及EDX分析 67
圖4. 31 Ni-Dia.800 Pin / Ni-W (200℃) 對磨組表面磨損形態及EDX分析 68
圖4. 32 Ni-Dia.800 Pin / Ni-W (300℃) 對磨組表面磨損形態及EDX分析 69
圖4. 33 Ni-W塗層體積磨耗損失 (a) (Ni-Dia. 325 /Ni-W) (b) (WC-Co /Ni-W) (c)(Ni-Dia. 800 /Ni-W) 71
圖4. 34 (a)WC-Co 粉體SEM形貌(b)EDX檢測分析圖 76
圖4. 35 WC-Co 塗層SEM表面形貌及EDX分析 77
圖4. 36 WC-Co塗層橫截面SEM形貌及EDX檢測分析 78
圖4. 37 Ni-Dia. 800 Pin / WC-Co 塗層平均摩擦係數曲線圖 79
圖4. 38 Ni-Dia.800 Pin / WC-Co (25℃) 對磨組表面磨損形態及EDX分析 80
圖4. 39 Ni-Dia.800 Pin / WC-Co (100℃) 對磨組表面磨損形態及EDX分析 81
圖4. 40 Ni-Dia.800 Pin / WC-Co (200℃) 對磨組表面磨損形態及EDX分析 82
圖4. 41 Ni-Dia.800 Pin / WC-Co (300℃) 對磨組表面磨損形態及EDX分析 83
圖4. 42 WC-Co Pin / WC-Co 塗層平均摩擦係數曲線圖 84
圖4. 43 WC-Co Pin / WC-Co (25℃) 盤試件塗層表面磨損形態及EDX分析 85
圖4. 44 WC-Co Pin / WC-Co (100℃) 盤試件塗層表面磨損形態及EDX分析 86
圖4. 45 WC-Co Pin / WC-Co (200℃) 盤試件塗層表面磨損形態及EDX分析 87
圖4. 46 WC-Co Pin / WC-Co (300℃) 盤試件塗層表面磨損形態及EDX分析 88
圖4. 47 體積磨耗損失(a)Ni-Dia.800 / WC-Co(b)WC12Co/ WC12Co 89
圖4. 48 SUJ2 Pin / Steel & Coatings平均摩擦係數曲線圖 93
圖4. 49 SUJ2 Pin / Steel SKD11 (25℃) 對磨組表面磨損形態及EDX分析 94
圖4. 50 SUJ2 Pin / Ni-Cr Coatings (25℃) 對磨組表面磨損形態及EDX分析 95
圖4. 51 SUJ2 Pin / Ni-W Coatings (25℃) 對磨組表面磨損形態及EDX分析 96
圖4. 52 SUJ2 Pin / WC-Co Coatings (25℃) 對磨組表面磨損形態及EDX分析 97
圖4. 53 磨耗體積損失 (a)盤試件(SUJ2 Pin vs. Steel & Coatings Disk) (b)銷試件 (SUJ2 Pin vs. Steel & Coatings Disk) 98
圖4. 54 磨耗體積損失(a)盤試件(WC-Co Pin vs. Coatings Disk)(b)銷試件(WC-Co Pin vs. Coatings Disk) 99
參考文獻

[1] 孔繁柯,劉馥,軍用車輛運用工程,國防工業出版社,中國北京,第108-189
頁,1993。
[2] 劉長生,莫耀祖,汽車磨擦學,安徽科學技術出版社,中國安徽,第8-125
頁,1998。
[3] 黃振賢,機械材料,文京圖書有限公司,台灣台北,第271-278頁,1995。
[4] Budinski, K. G., Surface Engineering for Wear Resistance, New Jersey, U.S.A., pp. 15-42, 1987.
[5] Lotfi, B., Shipway, P.H., McCartney, D.G., and Edris, H., “Abrasive Wear Behaviour of Ni(Cr)-TiB2 Coatings Deposited by HVOF Spraying of SHS-Derived Cermet Powders”, Wear, Vol. 254, pp. 340-349, 2003.
[6] Horlock, A.J., McCartney, D.G., Shipway, P.H., and Wood, J.V., “Thermally Sprayed Ni(Cr)-TiB2 Coatings Using Powder Produced by Self-Propagating High Temperature Synthesis: Microstructure and Abrasive Wear Behaviour,” Materials Science and Engineering, Vol. A 336, pp. 88-98, 2002.
[7] Hu, W., Guan, H., Sun, X., and Li, S., “Graded Coatings Prepared by Plasma Spraying with Ni-Coated ZrO2 Powders,” Surface & Coatings Technology, Vol. 105, pp. 102-108, 1998.
[8] Kim, H.J., Hwang, S.Y., Lee, C.H., and Juvanon, P., “Assessment of Wear Performance of Flame Sprayed and Fused Ni-Based Coatings,” Surface and Coatings Technology, Vol. 172, pp. 262-269, 2003.
[9] Martin, A., Rodriguez, J., Fernandez, J.E., and Vijande, R., “Sliding Wear Behaviour of Plasma Sprayed WC-NiCrBSi Coatings at Different Temperatures,” Wear, Vol. 250-251, pp. 1017-1022, 2001.
[10] He, Q., Guo, S., and Liu, W., “Analysis of Chemical Valence of the Elements of the Oxidized Surface Layer of a Thermally Sprayed Ni-Cr Coating under Fretting,” Surface & Coatings Technology, Vol. 106, pp. 91-93, 1998.
[11] Lesage, J., Staia, M.H., Chicot, D., Godoy, C., and De Miranda, P.E.V., “Effect of Thermal Treatments on Adhesive Properties of a NiCr Thermal Sprayed Coating,” Thin Solid Films, Vol. 377-378, pp. 681-686, 2000.
[12] Rosso, M., Scrivani, A., Ugues, D., and Bertini, S., “Corrosion Resistance and Properties of Pump Pistons Coated with Hard Materials,” International Journal of Refractory Metals and Hard Materials, Vol. 19, pp. 45-52, 2001.
[13] Dehm, G., Medres, B., Shepeleva, L., Scheu, C., Bamberger, M., Mordike, B.L., Mordike, S.; Ryk, G., Halperin, G., and Etsion, I., “Microstructure and Tribological Properties of Ni-Based Claddings on Cu Substrates,” Wear, Vol. 225-229, pp. 18-26, 1999.
[14] Miguel, J.M., Guilemany, J.M., and Vizcaino, S., “Tribological Study of NiCrBSi Coating Obtained by Different Processes,” Tribology International, Vol. 36, pp. 181-187, 2003.
[15] Hawthorne, H.M., Arsenault, B., Immarigeon, J.P., Legoux, J.G., and Parameswaran, V.R., “Comparison of Slurry and Dry Erosion Behaviour of Some HVOF Thermal Sprayed Coatings,” Wear, Vol. 225-229, pp. 825-834, 1999.
[16] Tu, J.P., Liu, M.S., and Mao, Z.Y., “Erosion Resistance of Ni-WC Self-Fluxing Alloy Coating at High Temperature,” Wear, Vol. 209, pp. 43-48, 1997.
[17] Linmao Qian, Zhongrong Zhou, and Qingping Sun, “The Role of Phase Transition in the Fretting Behavior of Ni-Ti Shape Memory Alloy,” Wear, Vol. 259, pp. 309-318, 2005.
[18] Stewart, D.A., Shipway, P.H., and McCartney, D.G., “Abrasive Wear Behaviour of Conventional and Nanocomposite HVOF-Sprayed WC-Co Coatings,” Wear, Vol. 225-229, pp. 789-798, 1999.
[19] Yang, Qiaoqin, Senda, Tetsuya, and Ohmori, Akira, “Effect of Carbide Grain Size on Microstructure and Sliding Wear Behavior of HVOF-Sprayed WC-12% Co Coatings,” Wear, Vol. 254, pp. 23-34, 2003.
[20] Stewart, D.A., Shipway, P.H., McCartney, D.G., “Influence of Heat Treatment on the Abrasive Wear Behaviour of HVOF Sprayed WC-Co Coatings,” Surface & Coatings Technology, Vol. 105, pp. 13-24, 1998.
[21] Chen, H., Xu, C., Zhou, Q., Hutchings, I.M., Shipway, P.H., and Liu, J., “Micro-Scale Abrasive Wear Behaviour of HVOF Sprayed and Laser-Remelted Conventional and Nanostructured WC-Co Coatings,” Wear, Vol. 258, pp. 333-338, 2005.
[22] Sudaprasert, T., Shipway, P.H., and McCartney, D.G., “Sliding Wear Behaviour of HVOF Sprayed WC-Co Coatings Deposited with Both Gas-Fuelled and Liquid-Fuelled Systems,” Wear, Vol. 255, pp. 943-949, 2003.
[23] Sahraoui, Tahar, Fenineche, Nour-Eddine, Montavon, Ghislain, and Coddet, Christian, “Structure and Wear Behaviour of HVOF Sprayed Cr3C2-NiCr and WC-Co Coatings,” Materials and Design, Vol. 24, pp. 309-313, 2003.
[24] Shipway, P.H., and Howell, L., “Microscale Abrasion - Corrosion Behaviour of WC-Co Hardmetals and HVOF Sprayed Coatings,” Wear, Vol. 258, pp. 303-312, 2005.
[25] Liao, H., Normand, B., and Coddet, C., “Influence of Coating Microstructure on the Abrasive Wear Resistance of WC/Co Cermet Coatings,” Surface and Coatings Technology, Vol. 124, pp. 235-242, 2000.
[26] Dent, A.H., DePalo, S., and Sampath, S., “Examination of the Wear Properties of HVOF Sprayed Nanostructured and Conventional WC-Co Cermets with Different Binder Phase Contents,” Journal of Thermal Spray Technology, Vol. 11, pp. 551-558, 2002.
[27] Nieminen, R., Vuoristo, P., Niemi, K., Mantyla, T., and Barbezat, G., “Rolling Contact Fatigue Failure Mechanisms in Plasma and HVOF Sprayed WC-Co Coatings,” Wear, Vol. 212, pp. 66-77, 1997.
[28] Guilemany, J.M., Miguel, J.M., Vizcaino, S., and Climent, F., “Role of Three-Body Abrasion Wear in the Sliding Wear Behaviour of WC-Co Coatings Obtained by Thermal Spraying,” Surface and Coatings Technology, Vol. 140, pp. 141-146, 2001.
[29] Qiao, Yunfei, Fischer, Traugott E., and Dent, Andrew, “The Eeffects of Fuel Chemistry and Feedstock Powder Structure on the Mechanical and Tribological Properties of HVOF Thermal-Sprayed WC-Co Coatings with Very Fine Structures,” Surface and Coatings Technology, Vol. 172, pp. 24-41, 2003.
[30] Murthy, J.K.N., Rao, D.S., and Venkataraman, B., “Effect of Grinding on the Erosion Behaviour of a WC-Co-Cr Coating Deposited by HVOF and Detonation Gun Spray Processes,” Wear, Vol. 249, pp. 592-600, 2001.
[31] Ko, P.L., and Robertson, M.F., “Wear Characteristics of Electrolytic Hard Chrome and Thermal Sprayed WC-10 Co-4 Cr Coatings Sliding Against Al-Ni-Bronze in Air at 21 °C and at -40 °C,” Wear, Vol. 252, pp. 880-893, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top