|
[1]A. C. Eringen, “Linear theory of micropolar elasticity”, Journal of Mathematics and Mechanics, Vol. 15, No. 6, pp. 909-923, 1966. [2]S. C. Cowin, “An incorrect inequality in micropolar elasticity theory”, Zeitschrift fur Angewandte Mathematik und Physik: ZAMP (Journal of Applied Mathematics and Physics), Vol.21, pp. 494-497, 1970. [3]R. D. Gauthier and W. E. Jahsman, “A quest for micropolar elastic constants”, Journal of Applied Mechanics, Transactions of ASME, Vol. 42, pp. 369-374, 1975. [4]S. Nakamura, R. Benedict and R. Lakes, “Finite element method for orthotropic micropolar elasticity”, International Journal of Engineering Science, Vol. 22, No. 3, pp. 319-330, 1984. [5]F. Y. Huang and K. Z. Liang, ”Torsional analysis of micropolar elasticity using the finite element method”, International Journal of Engineering Science, Vol. 32, No. 2, pp. 347-358, 1994. [6]K. Z. Liang and F. Y. Huang, “Boundary element method for micropolar elasticity”, International Journal of Engineering Science, Vol. 34, No. 5, pp. 509-521, 1996. [7]F. Y. Huang and K. Z. Liang, “Boundary element analysis of stress concentration in micropolar elastic plate”, International Journal for Numerical Methods in Engineering, Vol. 40, pp. 1611-1622, 1997. [8]F. Y. Huang, B. H. Yan, J. L. Yan and D. U. Yang, “Bending analysis of micropolar elastic beam using 3-D finite element method”, International Journal of Engineering Science, Vol. 38, pp. 275-286, 2000. [9]R. F. Almgren, “An isotropic three-dimensional structure with Poisson’s ratio = -1”, Journal of Elasticity, Vol. 15, pp. 427-430, 1985. [10]K. E. Evans, “Tensile network microstructures exhibiting negative Poisson’s ratios”, Journal of Physics D: Applied Physics, Vol. 22, pp. 1870-1876, 1989. [11]B. D. Caddock and K. E. Evans, “Microporous materials with negative Poisson’s ratios: I. Microstructure and mechanical properties”, Journal of Physics D: Applied Physics, Vol. 22, pp. 1877-1882, 1989. [12]K. E. Evans and B. D. Caddock, “Microporous materials with negative Poisson’s ratios: II. Mechanisms and interpretation”, Journal of Physics D: Applied Physics, Vol. 22, pp. 1883-1887, 1989. [13]J. B. Choi and R. S. Lakes, “Non-linear properties of polymer cellular materials with a negative Poisson’s ratio”, Journal of Materials Science, Vol. 27, pp. 4678-4684, 1992. [14]J. B. Choi and R. S. Lakes, “Design of a fastener based on negative Poisson’s ratio foam”, Cellular Polymers, Vol. 10, No. 3, pp. 205-212, 1991. [15]J. Lee, J. B. Choi and K. Choi, “Application of homogenization FEM analysis to regular and re-entrant honeycomb structures”, Journal of Materials Science, Vol. 31, pp. 4105-4110, 1996. [16]D. U. Yang and F. Y. Huang, “Analysis of poisson’s ratio for a micropolar elastic rectangular plate using the finite element method”, Engineering Computation, Vol. 18, No. 7, pp. 1012-1030, 2001. [17]D. U. Yang, B. H. Yan and F. Y. Huang, “The effects of material constants on the micropolar elastic honeycomb structure with negative Poisson’s ratio using the finite element method”, Engineering Computation, Vol. 19, No. 7, pp. 742-763, 2002. [18]D. U. Yang, S Lee and F. Y. Huang, “Geometric effects on micropolar elastic honeycomb structure with negative Poisson’s ratio using the finite element method”, Finite Element in Analysis and Design, Vol. 39, pp. 187-205, 2003. [19]S. Nakamura and R. Lakes, “Finite element analysis of Saint-Venant end effects in micropolar elastic solids”, Engineering Computations. Vol. 12, pp. 571-587, 1995. [20]T. R. Chandrupatla and A. D. Belegundu, Introduction to Finite Element in Engineering, 3rd. Prentice-Hall International, Inc, pp. 130-151, 2002. [21]T. Y. Yang, Finite Element Structural Analysis, Prentice-Hall, Inc. Englewood Cliffs, N. J., pp. 368-369, 1986. [22]K. Z. Liang and F. Y. Huang, “Boundary element method for micropolar thermoelasticity”, Engineering Analysis with Boundary Elements, Vol. 17, pp. 19-26, 1996.
|