|
Rawe, J., What Will Be The 10 Hottest Jobs?, Time, May 22, p.21, 2000. [2] Shah, P.K. and Zohger, D., Unstable Angina, edited by. M.H. Crawford, New York, The McGraw-Hill Companies, Inc, 1999. [3] Fox, B. and Seed, W.A., “Location of early atheroma in the human coronary arteries,” Journal of biomechanical engineering, Vol. 103, pp. 208-212, 1981. [4] Grottum, P., Svindland, A. and Walloe, L., “Localization of Atherosclerotic lesions in the bifurcation of the left main coronary artery,” Atherosclerosis., Vol. 47, pp. 55-62, 1983. [5] Sabbah, H.N., Walburn, F.J. and Stein, P.D., “Patterns of flow in the left coronary artery,” Journal of biomechanical engineering, Vol. 106, pp. 272-279, 1984a. [6] Sabbah, H.N., Khaja, F. and Brymer, J.F. et al., “Blood velocity in the right coronary artery:Relation to the distribution of atherosclerotic lesions,” The American Journal of Cardiology., Vol. 53, pp. 1008-1012, 1984b. [7] Fox, B., James, K., Morgan, B., and Seed, A., “Distribution of fatty and fibrous plaques in young human coronary arteries,” Atherosclerosis., Vol. 41, pp. 337-347, 1982. [8] Asakura, T. and Karino, T., “Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries, ” Circulation Research., Vol. 66, pp. 1045-1066, 1990. [9] Ting, T.-W. D., “Computational fluid dynamics modeling of blood flow in human root of aorta and left coronary artery, Ph. D. thesis,” The Johns Hopkins University, Baltimore, Maryland, pp. 64-70, 1999. [10] Svindland A., “The localization of sudanophilic and fibrous plaques in the main left coronary bifurcation ,” Atherosclerosis., Vol. 48, pp. 139-145, 1983. [11] Altobeli, S.A. and Nerem, R.M., “An experimental study of coronary artery fluid mechanics,” Journal of biomechanical engineering., Vol. 107, pp. 16-23, 1985. [12] Kajiya, F., Tomonaga, G. and Tsujioka, K. et al., “Evaluation of local blood flow velocity in proximal and distal coronary arteries by laser Doppler method,” Journal of biomechanical engineering., Vol. 107, pp. 10-15, 1985. [13] He, X. and Ku, D.N., “Pulsatile flow in the human left coronary artery bifurcation:Average conditions,” Journal of biomechanical engineering., Vol. 118, pp. 74-82, 1996. [14] Perktold, K., Nerem, R.M. and Peter, R.O., “A numerical calculation of flow in a curved tube model of the left main coronary artery,” Journal of Biomechanics., Vol. 24, pp. 175-189, 1991. [15] Giddens, D.P., Zarins, C.K., and Glagov, S., “The Role of Fluid Mechanics in the Localization and Detection of Atherosclerosis,” Journal of biomechanical engineering., Vol. 115, pp. 588-594, 1993. [16] Fry, D.L., “Acute Vascular Endothelial Changes Associated with Increased Blood Velocity,” Circulation Research., Vol. 22, pp. 165-197, 1968. [17] Carew, T.E., III., “Mechano-Chemical Response of Canine Aoric Endothelium to Elevated Shear Stress In Vitro, Ph.D. thesis,” The Catholic University of America., Washington, D.C, pp. 64-70, 1971. [18] Rosen, L.A., Hollis, T.M., and Sharma, M.G., “Alterations in Bovine Endothelial Histidine Decarboxylase Activity Following Exposure to Shearing Stresses,” Experimental and Molecular Pathology., Vol. 20, pp. 329-343, 1974. [19] DeForrest, J.M. and Hollis, T.M., “Shear Stress and Aortic Histamine Synthesis,” American Journal of Physiology., Vol. 234, pp. H701-H705, 1978. [20] Schwartz, S.M., Haudenschild, C.C., and Eddy, E.M., “Endothelial Regeneration, I. Quantitative Analysis of Initial Stages of Endothelial Regeneration in Rat Aortic Intima,” Laboratory Investigation., Vol. 38, pp. 568-579, 1978. [21] Niklason, L.E., Gao, J., Abbott, W.M., Hirschi, K.K., Houser, S., Marini, R., Langer, R., “Functional Arteries Grown in Vitro,” Science., Vol. 284, pp. 489-493, 1999. [22] Dewey, C.F., Jr., Bussolari, S.R., Gimbrone, M.A., Jr., and Davies, P.F., “The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress,” Journal of biomechanical engineering., Vol. 103, pp. 177-185, 1981. [23] Van Grandelle, A., Worthen, G.S., Ellsi, D., Mathias, M.M., Murphy, R.C., Strife, R.J., Voelkel, N.F., “Altering Hydrodynamic Variables Influences PGI2 Production by Isolated Lungs and Endothelial Cells,” Journal Applied Physiology., Vol. 57, pp. 388-395, 1984. [24] Mohati, M., Gupta, M.K., Donlon, B., Ellison, B., Cooke, J., Gibbons, G., Schurman, D.J., Smith, R.L., “Expression of Interleukin-6 in Osteoarthritic Chondrocytes and Effects of Fluid-Induced Shear on This Expression in Normal Human Chondrocytes in Vitro,” Journal Orthopaedic Research., Vol. 14, pp. 67-73, 1996. [25] Hermann, C., Zeiher, A.M., Dimmeler, S., “Shear Stress Inhibits H202-Induced Apoptosis of Human Endothelial Cells by Modulation of The Glutathione Redox Cycle and Nitric Oxide Synthase,” Arteriosclerosis, Thrombosis and Vascular Biology., Vol. 17, pp. 3588-3592, 1997. [26] Brown, T.D., “Techniques for Mechanical Stimulation of Cells in Vitro: a Review,” Journal Biomechanics., Vol. 33, pp. 3-14, 2000. [27] Mooney, M. and Ewart, R. H., “The conicylindrical viscometer.” Physica., Vol. 5, pp. 350-354, 1934. [28] Cox, D. B., “Radial flow in the cone-plate viscometer,” Nature., pp.193, 1962. [29] Pelech, I. and Shapiro, A. H., “Flexible disk rotating on a gas film next to a wall,” Transactions of The. ASME, Journal Applied Mechanics., Vol. 31, pp.577-584, 1967. [30] Cheng, D. C.-H., “The effect of secondary flow on the viscosity measurement using a cone-and-plate viscometers,” Chemical Engineering Science., Vol. 23, pp.895-899, 1968. [31] Fewell, M. E. and Hellum, J. D., “The secondary flow of Newtonian fluids in cone-and-plate viscometers,” Transactions of the Society of Rheology., Vol. 21, pp.535-565, 1977. [32] Bussolari, S. R., Dewey, C. F. and Gimbrone, M. A., “Apparatus for subjectingliving cells to fluid shear stress,” Review of Scientific Instruments., Vol. 53(12), pp.1851-1854, 1982. [33] Sdougos, H. P., Bussolari, S. R. and Dewey, C. F., “Secondary flow and turbulence in a cone-and-plate device.” Journal of Fluid Mechanics., pp.379-404, 1984. [34] Von Karman, Th. Von., “Uber Laminare and Turbulent Reibung,” Zeitschrift fur Angewandte Mathematik und Mechanik., Vol. 1, pp.233-252, 1921. [35] Motooyuki, I., Yutaka, Y., Shigekt I., Masahiro, G., “Experiments on Turbulent Flow Due to an Enclosed Rotating Disk,” Elsevier Science Publishing Co., pp.659-669, 1990. [36] Ames, W. F., Numerical Methods for Partial Differential Equations, Academic Press, New York, pp.1-13, 1977. [37] Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method, McGRAW-Hill, pp.82-100, 1989. [38] Ferziger, J. H. and Peric, M., Computational Methods for Fluid Dynamics, Springer, New York, pp.23-37, 1996. [39] Lee., S. L., “A strongly implicit solver for two-dimensional elliptic differential equations”, Numer. Heat Transfer, 16B, pp.161, 1989. [40] Wheeler, D. C., Bailey and Cross., M., “Numerical Modelling and Validation of Marangoni and Surface Tension Phenomena Using The Finite Volume Method,” International Journal for Numerical Methods in Fluids, Vol. 32, pp.1021-1047, 2000.
|