跳到主要內容

臺灣博碩士論文加值系統

(44.211.24.175) 您好!臺灣時間:2024/11/05 05:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俞綸
研究生(外文):CHEN, YU-LUN
論文名稱:運用於細胞培養之圓錐-平板裝置設計機制之研析
論文名稱(外文):Study of the Design of Cone-Plate Apparatus for the Application of Culturing Cells
指導教授:丁大為
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:兵器系統工程研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:138
中文關鍵詞:圓錐-平板裝置血管內層細胞細胞培養二次流
外文關鍵詞:Cone-Plate ApparatusEndothelial CellCell CultureSecondary Flow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
圓錐-平板裝置可產生近於人體血液循環所造成之複雜剪應力環境,利用此裝置即可於體外觀察血管內層細胞受不同剪應力環境刺激下之生化反應。本研究乃以數值模擬方式研究圓錐-平板裝置中位於旋轉圓錐與固定平板間之流體受固定轉速圓錐驅動後之流動狀態,並探討旋轉圓錐之幾何外型變化對流場及作用於於固定平板上之剪應力大小所造成的影響。
為配合圓錐平板裝置之實際操作狀況,即當旋轉圓錐錐角與固定平板之間維持一固定距離 h,且依圓錐-平板裝置之機械精度的不同而將此距離 h 定為0.1、0.2、0.5 mm (h* = 0.00133、0.00267、0.00667),並改變圓錐錐角 為 、 、 、 、轉速 為1、5、10、15 rad/s (Re = 1875、9375、18750、28125)時,針對不同圓錐外型所產生之流場及作用於固定平板上之剪應力分佈情況進行分析,其中將利用三角形(Triangle)圓錐、懸垂線(Catenary)圓錐、懸垂線修正式(Modified Catenary)圓錐等三種不同外型之圓錐設計,由比較此三種不同圓錐設計於固定平板自r = 0.2R處至接近外圍壁面處(r = 0.9R)之環狀區域內所產生之剪應力分佈之均勻性,即可了解不同圓錐外型設計所產生之效果。由結果顯示當圓錐與平板間維持一固定距離(h)越高、圓錐錐角( )越大及高轉速( )時,懸垂線修正式圓錐於底部固定平板所產生無因次剪應力之標準偏差值會越小且均勻性越佳。
因流體於旋轉圓錐與固定平板間之流動特性、速度大小及無因次剪應力分佈乃因圓錐與固定平板間維持一固定距離(h)、轉速( )及圓錐錐角( )改變而有變化。藉本研究即可評估不同外型設計之旋轉圓錐對底部固定平板所產生之剪應力分佈均勻性而所造成之效果,以此作為設計、製作圓錐-平板裝置所需參數研究之基礎。
The cone-plate apparatus can create the complicated shear stress conditions similar to those happened in blood circulation to act on the endothelial cells. By using this apparatus researcher can in vitro observe the response and investigate the biochemical reactions of endothelial cells under the environments of varying shear stress. In this research the numerical simulation was used to study the flow phenomenon driven by the rotary cone and other features of fluid flow in the area between the rotation cone and the stationary plate. The effects of different cone’s geometry on the variation of shear stress on the stationary plate was analyzed in this research.
According to the conditions of practical use, there is the distance h existed between the tip of the rotary cone and the stationary plate. And the cone-plate apparatus involve different precisions to have the distance h from 0.1, 0.2, 0.5 mm (h* = 0.00133, 0.00267, 0.00667). The cone angle from , , , and angular speed from 1, 5, 10, 15 rad/s (Re = 1875,9375,18750,28125) were also used to study the effects of different geometries of rotary cones on the flow phenomenon and the conditions of wall shear stress distribution on the plate. There are three cones, triangular cone, cone of catenary and cone of modified catenary with different geometries. To compare the uniformity of the wall shear stress distribution created by different rotating cones on the annular area from r = 0.2R to r = 0.9 R of the plate, it will be realized that different design of rotary cones can improve the uniformity of wall shear stress distribution. From the numerical result it can be found that at higher distance h, larger cone angle and the high angular speed the cone of modified catenary can produce smaller deviation and better uniformity of the dimensionless shearing stress on the fixed plate.
The characteristics of fluid flow, velocity and the distribution of dimensionless shear stress in the area between the rotary cone and the stationary plate are affected by the distance h, cone angle and the angular speed . It can also evaluate the effects of different geometries of rotary cone on the uniformity of the shear stress distribution of the stationary plate in this research. From which the primary parameters were studies to know the preliminary data for the design and the manufacture of the real cone-plate apparatus.
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 vi
表目錄 x
圖目錄 xi
符號說明 xix
1. 緒論 1
1.1 研究動機 1
1.2 動脈簡介 2
1.3 組織工程簡介 6
1.3.1 支架 6
1.3.2 細胞 6
1.3.3 訊號因子 6
1.4 組織器官簡介 7
1.4.1 自體移植(Autografting) 7
1.4.2 同種異體移植(Allografting) 8
1.4.3 異種異體移植(Xenograft) 8
1.4.4 人造材料(Artificial Materials) 8
1.5 組織工程生物反應器 8
1.5.1 生物反應器特點 9
1.5.2 生物反應器優點 9
1.6 文獻回顧 10
1.6.1 平板流室型(Parallel-Plate Flow Chamber) 10
1.6.2 圓錐-平板型(Cone-Plate Viscometer Like Instruments) 10
1.7 研究目的 11
2. 理論分析 13
2.1 分析流程 13
2.2 模型尺寸 16
2.2.1圓錐與平板間維持點接觸時之模型 16
2.2.2圓錐與平板間維持一固定距離時之模型 17
2.3 基本假設 18
2.4 圓錐-平板裝置 19
2.5 圓錐外型曲線設計 21
2.6 統御方程式 22
2.6.1有限體積法之數值分析 23
2.6.2 連續方程式 24
2.6.3 動量方程式 24
2.6.4 無因次參數 26
2.7 空間限制條件 28
2.7.1 流體性質 28
2.7.2 邊界條件 28
3. 數值方法與格點測試 31
3.1 流體力學數值計算 31
3.1.1 有限差分法 31
3.1.2 有限元素法 32
3.1.3 有限體積法 32
3.2 流場特性 33
3.3 網格系統 35
3.4 網格產生方法簡介 37
3.4.1 結構性網格 37
3.4.2 非結構性網格 38
3.5 格點位置的配置 39
3.6 格點測試 41
3.7 圓錐與平板間維持點接觸之格點配置 43
3.8 圓錐與平板間維持一固定距離之格點配置 46
3.9 數值計算分析 47
3.9.1標準偏差值(Standard Deviation) 47
3.9.2 平均值 48
3.9.3 無因次標準偏差值(相對離差) 48
4. 結果與討論 49
4.1 分析方案 49
4.2 圓錐與平板間維持點接觸之流場變化 52
4.2.1 旋轉圓錐角度為0度 52
4.2.2 旋轉圓錐角度為1度 55
4.2.3 旋轉圓錐角度為2度 59
4.2.4 旋轉圓錐角度為3度 61
4.3 圓錐與平板間維持一固定距離 63
4.3.1 二次流及對稱性之探討 64
4.3.2 分析無因次剪應力 *在固定平板上之變化 74
4.3.3 分析標準偏差值在固定平板之變化 92
4.3.4 分析無因次剪應力 *在垂直方向之變化 106
4.3.5 分析無因次剪應力 *在公式計算及數值模擬中之差值 115
5. 結論 121
6. 未來工作 124
參考文獻 125
附錄 A 130
自傳 138
Rawe, J., What Will Be The 10 Hottest Jobs?, Time, May 22, p.21, 2000.
[2] Shah, P.K. and Zohger, D., Unstable Angina, edited by. M.H. Crawford, New York, The McGraw-Hill Companies, Inc, 1999.
[3] Fox, B. and Seed, W.A., “Location of early atheroma in the human coronary arteries,” Journal of biomechanical engineering, Vol. 103, pp. 208-212, 1981.
[4] Grottum, P., Svindland, A. and Walloe, L., “Localization of Atherosclerotic lesions in the bifurcation of the left main coronary artery,” Atherosclerosis., Vol. 47, pp. 55-62, 1983.
[5] Sabbah, H.N., Walburn, F.J. and Stein, P.D., “Patterns of flow in the left coronary artery,” Journal of biomechanical engineering, Vol. 106, pp. 272-279, 1984a.
[6] Sabbah, H.N., Khaja, F. and Brymer, J.F. et al., “Blood velocity in the right coronary artery:Relation to the distribution of atherosclerotic lesions,” The American Journal of Cardiology., Vol. 53, pp. 1008-1012, 1984b.
[7] Fox, B., James, K., Morgan, B., and Seed, A., “Distribution of fatty and fibrous plaques in young human coronary arteries,” Atherosclerosis., Vol. 41, pp. 337-347, 1982.
[8] Asakura, T. and Karino, T., “Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries, ” Circulation Research., Vol. 66, pp. 1045-1066, 1990.
[9] Ting, T.-W. D., “Computational fluid dynamics modeling of blood flow in human root of aorta and left coronary artery, Ph. D. thesis,” The Johns Hopkins University, Baltimore, Maryland, pp. 64-70, 1999.
[10] Svindland A., “The localization of sudanophilic and fibrous plaques in the main left coronary bifurcation ,” Atherosclerosis., Vol. 48, pp. 139-145, 1983.
[11] Altobeli, S.A. and Nerem, R.M., “An experimental study of coronary artery fluid mechanics,” Journal of biomechanical engineering., Vol. 107, pp. 16-23, 1985.
[12] Kajiya, F., Tomonaga, G. and Tsujioka, K. et al., “Evaluation of local blood flow velocity in proximal and distal coronary arteries by laser Doppler method,” Journal of biomechanical engineering., Vol. 107, pp. 10-15, 1985.
[13] He, X. and Ku, D.N., “Pulsatile flow in the human left coronary artery bifurcation:Average conditions,” Journal of biomechanical engineering., Vol. 118, pp. 74-82, 1996.
[14] Perktold, K., Nerem, R.M. and Peter, R.O., “A numerical calculation of flow in a curved tube model of the left main coronary artery,” Journal of Biomechanics., Vol. 24, pp. 175-189, 1991.
[15] Giddens, D.P., Zarins, C.K., and Glagov, S., “The Role of Fluid Mechanics in the Localization and Detection of Atherosclerosis,” Journal of biomechanical engineering., Vol. 115, pp. 588-594, 1993.
[16] Fry, D.L., “Acute Vascular Endothelial Changes Associated with Increased Blood Velocity,” Circulation Research., Vol. 22, pp. 165-197, 1968.
[17] Carew, T.E., III., “Mechano-Chemical Response of Canine Aoric Endothelium to Elevated Shear Stress In Vitro, Ph.D. thesis,” The Catholic University of America., Washington, D.C, pp. 64-70, 1971.
[18] Rosen, L.A., Hollis, T.M., and Sharma, M.G., “Alterations in Bovine Endothelial Histidine Decarboxylase Activity Following Exposure to Shearing Stresses,” Experimental and Molecular Pathology., Vol. 20, pp. 329-343, 1974.
[19] DeForrest, J.M. and Hollis, T.M., “Shear Stress and Aortic Histamine Synthesis,” American Journal of Physiology., Vol. 234, pp. H701-H705, 1978.
[20] Schwartz, S.M., Haudenschild, C.C., and Eddy, E.M., “Endothelial Regeneration, I. Quantitative Analysis of Initial Stages of Endothelial Regeneration in Rat Aortic Intima,” Laboratory Investigation., Vol. 38, pp. 568-579, 1978.
[21] Niklason, L.E., Gao, J., Abbott, W.M., Hirschi, K.K., Houser, S., Marini, R., Langer, R., “Functional Arteries Grown in Vitro,” Science., Vol. 284, pp. 489-493, 1999.
[22] Dewey, C.F., Jr., Bussolari, S.R., Gimbrone, M.A., Jr., and Davies, P.F., “The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress,” Journal of biomechanical engineering., Vol. 103, pp. 177-185, 1981.
[23] Van Grandelle, A., Worthen, G.S., Ellsi, D., Mathias, M.M., Murphy, R.C., Strife, R.J., Voelkel, N.F., “Altering Hydrodynamic Variables Influences PGI2 Production by Isolated Lungs and Endothelial Cells,” Journal Applied Physiology., Vol. 57, pp. 388-395, 1984.
[24] Mohati, M., Gupta, M.K., Donlon, B., Ellison, B., Cooke, J., Gibbons, G., Schurman, D.J., Smith, R.L., “Expression of Interleukin-6 in Osteoarthritic Chondrocytes and Effects of Fluid-Induced Shear on This Expression in Normal Human Chondrocytes in Vitro,” Journal Orthopaedic Research., Vol. 14, pp. 67-73, 1996.
[25] Hermann, C., Zeiher, A.M., Dimmeler, S., “Shear Stress Inhibits H202-Induced Apoptosis of Human Endothelial Cells by Modulation of The Glutathione Redox Cycle and Nitric Oxide Synthase,” Arteriosclerosis, Thrombosis and Vascular Biology., Vol. 17, pp. 3588-3592, 1997.
[26] Brown, T.D., “Techniques for Mechanical Stimulation of Cells in Vitro: a Review,” Journal Biomechanics., Vol. 33, pp. 3-14, 2000.
[27] Mooney, M. and Ewart, R. H., “The conicylindrical viscometer.” Physica., Vol. 5, pp. 350-354, 1934.
[28] Cox, D. B., “Radial flow in the cone-plate viscometer,” Nature., pp.193, 1962.
[29] Pelech, I. and Shapiro, A. H., “Flexible disk rotating on a gas film next to a wall,” Transactions of The. ASME, Journal Applied Mechanics., Vol. 31, pp.577-584, 1967.
[30] Cheng, D. C.-H., “The effect of secondary flow on the viscosity measurement using a cone-and-plate viscometers,” Chemical Engineering Science., Vol. 23, pp.895-899, 1968.
[31] Fewell, M. E. and Hellum, J. D., “The secondary flow of Newtonian fluids in cone-and-plate viscometers,” Transactions of the Society of Rheology., Vol. 21, pp.535-565, 1977.
[32] Bussolari, S. R., Dewey, C. F. and Gimbrone, M. A., “Apparatus for subjectingliving cells to fluid shear stress,” Review of Scientific Instruments., Vol. 53(12), pp.1851-1854, 1982.
[33] Sdougos, H. P., Bussolari, S. R. and Dewey, C. F., “Secondary flow and turbulence in a cone-and-plate device.” Journal of Fluid Mechanics., pp.379-404, 1984.
[34] Von Karman, Th. Von., “Uber Laminare and Turbulent Reibung,” Zeitschrift fur Angewandte Mathematik und Mechanik., Vol. 1, pp.233-252, 1921.
[35] Motooyuki, I., Yutaka, Y., Shigekt I., Masahiro, G., “Experiments on Turbulent Flow Due to an Enclosed Rotating Disk,” Elsevier Science Publishing Co., pp.659-669, 1990.
[36] Ames, W. F., Numerical Methods for Partial Differential Equations, Academic Press, New York, pp.1-13, 1977.
[37] Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method, McGRAW-Hill, pp.82-100, 1989.
[38] Ferziger, J. H. and Peric, M., Computational Methods for Fluid Dynamics, Springer, New York, pp.23-37, 1996.
[39] Lee., S. L., “A strongly implicit solver for two-dimensional elliptic differential equations”, Numer. Heat Transfer, 16B, pp.161, 1989.
[40] Wheeler, D. C., Bailey and Cross., M., “Numerical Modelling and Validation of Marangoni and Surface Tension Phenomena Using The Finite Volume Method,” International Journal for Numerical Methods in Fluids, Vol. 32, pp.1021-1047, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top