(3.238.240.197) 您好!臺灣時間:2021/04/12 03:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉昇明
研究生(外文):Yeh sheng ming
論文名稱:穿音速軸流式壓縮機單級流場與性能分析
指導教授:曾培元
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:兵器系統工程研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:60
中文關鍵詞:壓縮器軸流式
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目標在於探討穿音速單級壓縮器流場特性。了解壓縮器之氣動力性能,發展建立軸流式壓縮器內流場的數值模擬能量以提供壓縮器研發設計之參考。
  本研究係採用CFX-Tascflow計算軟體模擬單級壓縮器流場的變化。以NASA Stage 36為例,執行單級壓縮器流場計算先驗證STAGE及FROZEN兩種界面(Interface)模式對流場變化之影響及差別。模擬結果與NASA Stage 36實驗比對時,發現紊流模式使用STANDARD 模式,而界面模式採STAGE-STAGE較為準確。進而執行50%至100%設計點轉速的性能分析。在計算出來的模擬流場中可發現震波生成的位置、壓力、溫度及性能曲線變化趨勢等,大致符合單級穿音速軸流式壓縮器的氣動力特性。
The main purpose of this research to investigate the flow field characteristics of a transonic one-stage compressors. The understanding of gas dynamics in the compressors and developing the capability of using computational fluid dynamic method is useful to the design and analysis of an axial compressor.
In this study, the CFD software CFX-Tascflow is applied for solving the complex flow field in a compressor and examing its performance. The model is based on the NASA Stage 36 axial-flow transonic compressor. The influences and differences of two interface models, Stage and Frozen, on the internal flow variations in the single stage compressor are discussed. The comparison between experiment data of NASA Stage 36 and the results obtained by the Tascflow calculation indicated that, the numerical sinulation operated with the standard model and interface model STAGE-SATGE has the best agreement. Then the rotating speeds from 50 to 100 percent of design speed are tested for performance analysis. It concluded that, the position of shock wave, the trends of the pressure and the temperature and performance curved are in good accord with the gas dynamics characteristics in an axial-flow transonic compressor stage.
目錄

誌謝 ii
摘要 ii
ABSTRACT iii
目錄 iv
表目錄 vi
圖目錄 vii
符號說明 ix
1. 序論..........................................................................................................................1
1.1 前言 1
1.2 相關論文研究之回顧 4
2. 數值方法 8
2.1 統御方程式 ……………………….………………….......………………….8
2.2 紊流模式………………..............………………..………………………...14
2.2.1 標準 紊流模式……......……..…………………….………...…14
2.2.2 紊流模式.….......…..……………………….…………...15
2.2.3 紊流模式……..….......………………………..……………….16
2.3 數值方法……………….……….......……………………………………...17
2.3.1 數值通量的計算.................................................................................18
2.3.2 壓力與速度的耦合......………………………………….…………..20
3.物理模型與邊界條件.....….............................…..............………………….…….22
3.1 物理模型………………………………........……………………………...22
3.2 邊界條件……………………………........………………………………...22
3.3 級與級界面………………………….......….……………………………...24
4.結果與討論 29
4.1 NASA Stage 36轉子、定子單級流場驗證…….......……………………...29
4.1.1網格配置………....…………………….......…………………………29
4.1.2數值比對...…………….……………….......…………………………29
4.2 STAGE 36 單級壓縮器各轉速流場模擬結果與分析…......……..………30
4.2.1各轉速壓力變化比較...………….............………...…………………31
4.2.2溫度變化比較…...............……….............………………….……..…32
4.2.3效益變化比較........…………….............…………………..…………32
4.3流場分析……..……………….......…….………...…………………………33
5.結論........….........…….......……………….….…………………………….60
參考文獻.....................................................................................................................61
自傳……………………………............................………………………………….65
參考文獻

[1] Ainley, D. G. and Mathieson, G. C. R., “A Method of Performance Estimation for Axial-Flow Turbine,” ARC R&M 2974, 1951.
[2] Moore, J. and Moore, J. E., “Performance Evaluation of Linear Turbine Cascade Using Three-Dimensional Viscous Flow Calculations,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 17, No. 1, pp. 969-975, 1985.
[3] Dawes, W. N., “Development of a Three-Dimensional Navier-Stokes Solver for Application to All Types of Turbomachinery,” ASME Paper No. 86-GT-70, 1986.
[4] Denton, J. D., “The Use of a Distributed Body Force to Simulate Viscous Flow in Three-Dimensional Flow Calculations,” ASME Paper No. 86-GT-144, 1986.
[5] Davis, R. L., Hobbs, D. E., and Weingold, H. D., “Prediction of Compressor Cascade Performance Using a Navier-Stokes Technique,” ASME Journal of Turbomachinery, Vol. 110, pp. 520-531, 1988.
[6] Giles, M. B., “Stator/Rotor Interaction in a Transonic Turbine,” AIAA Paper No. 88-3093, 1988.
[7] Rao, K. and Delaney, R., “Investigation of Unsteady Flow Through Transonic Turbine Stage,” AIAA Paper No. 90-2408, 1990.
[8] Adamczyk, J. J., “Model Equation for Simulating Flows in Multistage Turbomachinery,” ASME Paper No. 85-GT-226, 1985.
[9] Arts, T., “Calculation of the Three-Dimensional, Steady, Inviscid Flow in a Transonic Axial Turbine Stage,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 107, pp. 286-292, 1985.
[10] Ni, R. H., “Prediction of Three-Dimensional Multi-stage Turbine Flow Field Using a Multiple Grid Euler Solver,” AIAA Paper No. 89-0203, 1989.
[11] Sanger, N. L., “Design of a Low Aspect Ratio Transonic Compressor Stage Using CFD Techniques,” ASME Journal of Turbomachinery, Vol. 118, pp.479-491, 1996.
[12] 賴煥新,吳克啟, “軸流式壓氣機轉子內流數值模擬及頂間隙漏分析, ” 工程熱物理學報, Vol. 19, No. 5, 1998
[13] Nozaki, O., Kikuchi, K., Nishizawa, T., Matsuo, Y., Ooba, Y., and Kodama, H.,“Unsteady Three-Dimensional Viscous Flow Compurtations of Multiple-Blade-Row Interactions,” AIAA Paper No. 99-34033, 1999.
[14] Blaha, C., Kablitz, S., Hennecke, D. K., Schmidt-Eisenlohr, U., Pirker, K., and Haselhoff, S., “Numerical Investigation of The Flow in an Aft-swept Transonic Compressor Rotor” Proceeding of ASME TORBOEXOP 2000 May 8-11, Munich, Germany2000-GT-0490.
[15] 張士杰、袁新、葉大均, “跨聲速軸流壓氣機全工況三維流場數值分析, ” 推進技術, Vol. 23, No. 3, 2002
[16] 宋彥萍,李娜,王松濤,王仲奇, “彎曲動葉為跨音速軸流壓氣機性能影響, ” 工程熱物理學報, Vol. 25, No. 4, 2004
[17] 王永明,胡駿,鄧豔, “進氣畸變對軸流壓氣機性能影響的準三維運算, ” 推進技術, Vol. 25, No. 5, 2004
[18] 李傳朋,胡駿,張燎原,王英風, “軸向間距變化對壓氣機全流量特性的影響, ” 推進技術, Vol. 25, No. 6, 2004
[19] 侯樂毅,吳艷輝,楚武利, “軸流壓氣機葉片加厚對氣動性能影響分析, ” Fluid Machinery, Vol. 32, No. 6, 2004
[20] 商旭升,蔡元虎,侯樂毅,陳玉春, “軸流壓氣機孤立轉子內流場數值模擬, ” 推進技術, Vol. 26, No. 1, 2005
[21] 楊宏壬, “渦輪引擎穿音速壓縮器轉子紊性流場之數值模擬”,碩士論文,國防大學中正理工學院,桃園大溪,2004。
[22] Launder, B. E. and Spalding, D. B., "The Numerical Computation of Turbulent Flows," Comp. Meth. Appl. Eng., Vol. 3, No. 2, pp. 269-289,1974.
[23] Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., and Speziale, C.G., “Development of Turbulence Models for Shear Flow by a Double Expansion Technique,” Physics Fluids, Part A, Vol. 4, No. 7, pp. 1510-1520, 1992.
[24] Wilcox, D. C., “Comparison of Two-Equation Turbulence Models for Boundary Layers with Pressure Gradient,” AIAA Journal, Vol. 31, No. 8, pp. 1414-1421, 1993.
[25] Baliga, B. R. and Patankar, S. V., “A Control Volume Finite-Element Method for Two-Dimensional Fluid Flow and Heat Transfer,” Numerical Heat Transfer, Vol. 6, pp. 245-261, 1983.
[26] Van Doormaal, J. P., Turan, A., and Raithby, G. D., “Evaluation of New Techniques for the Calculation of Internal Recirculating Flows,” AIAA Paper No. 87-0059, 1987.
[27] Raithby, G. D., “Skewed Upstream Differencing Schemes for Problems Involving Fluid Flow,” Comp. Meth. Appl. Mech. Eng., Vol. 9, No. 2, pp. 153-164, 1976.
[28] Rhie, C. M. and Chow, W. L., “A Numerical Study of the Turbulent Flow Past an Isolated Airfoil with Trailing Edge Separation,” AIAA paper No. 82-0998, 1982.
[29] Prakash, C. and Patankar, S. V., “A Control Volume Based Finite Element Method for Solving the Navier-Stokes Equations Using Equal Order Velocity-Pressure Interpolation,” Numerical Heat Transfer, Vol. 8, pp. 259-280, 1985.
[30] Royce, D. M. and Lonnie, R., “Performance Of Single-Stage Axial-Flow Transonic Compressor With Rotor And Stator Aspect Ratios Of 1.63 And 1.78, Respectively, And With Design Pressure Ratio Of 1.82,” NASA Technical paper 1974, 1982.
[31] Denton, J. D., “Extension of Finite Volume Time Marching Method to Three Dimensions,” VKI Lecture Series 1979-7, 1979.
[32] Denton, J. D., “Calculation of 3D Viscous Flow through Multistage Turbo- Machines,” Trans. ASME, J. Turbomechinery, Vol. 114, No. 1, 1992.
[33] Fritsch, G. and Giles, M. B., “An Asymptotic Analysis of Mixing Loss,” ASME paper No. 93-GT-345,1993.
[34] Adamczyk, J. J., “Model Equation for Simulating Flows in Multistage Turbo- Machinery,” ASME paper No. 85-GT-226, 1985.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳文星(1997)。國民中學「認識台灣(歷史篇)」科教材編寫的構想與特色。人文及社會學科教學通訊,7(5),36-41。
2. 吳俊憲(2001)。爲九年一貫課程社會領域教科書的誕生做準備-社會科相關意涵分析。國教輔導,40(4),32-37。
3. 吳密察(1997)。歷史教育與鄉土教育-一個提供討論的意見。當代,120,32-37。
4. 吳密察(1994)。台灣史的成立及其課題。當代,100,78-97。
5. 王崑義、蔡裕明(2004)。全球化、人類安全與後SARS時代:兩岸非傳統安全的新議題。遠景基金會季刊,5(2),153-195。
6. 王崇峻(1992)。國民小學社會科新課本第九、十、十一冊中歷史部份的檢討。人文及社會學科教學通訊,3(3),99-108。
7. 吳文星(2000)。「認識台灣(歷史篇)」對日本殖民統治時期社會變遷之編纂。人文及社會學科教學通訊,10(5),35-43。
8. 朱煜(2003)。台灣高中新歷史教科書的編寫及其理念試析-以「龍騰本」為例。歷史月刊,180,66-71。
9. 王為國(1998)。全球化觀點的教育政策。國教輔導,37(4),44-47。
10. 王明珂(2001)。史料的社會意義:事實、述事與展演。近代中國,143,6-13。
11. 朱重聖、張鴻銘(2000)。檔案與歷史教育-以國史館現藏檔案的運用為例。國史館館刊,29,257-298。
12. 王和安(2003)。論台灣之歷史分期-以1624年之後為討論。史匯,7,241-248。
13. 任育德(2001)。「漫畫中的歷史,歷史中的漫畫」學術座談會紀錄。近代中國,143,90-112。
14. 王淑芬(2001)。社會學習領域課程特色之探討。翰林文教雜誌,21,8-14。
15. 何蕙琪(2005)。大眾文化與青少年-以漫畫為例。人文及社會學科教學通訊,15(5),116-126。
 
系統版面圖檔 系統版面圖檔