跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/08 04:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳宏宗
研究生(外文):CHEN. HUNG-TSUNG
論文名稱:即時機車辨識與追蹤系統
論文名稱(外文):Real Time Motorcycle Recognition and Tracking System
指導教授:陸儀斌,瞿忠正
指導教授(外文):Lu. Yi-Bin ,Chiu. Chung-Cheng
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:80
中文關鍵詞:交疊影像切割機車辨識擷取卡重要性穩定性攝影機連通法車輛追蹤
外文關鍵詞:Occlusive image segmentationmotorcycle recognitionsystemtaiwanvehicle tracking
相關次數:
  • 被引用被引用:0
  • 點閱點閱:547
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
現今各國社會經濟快速的發展,交通運輸是否發達,成為一項重要的指標,所以在一個國家中交通運輸所扮演的角色,猶如人體之內的血液循環系統,環環相扣,其重要性不可言喻。現階段由於機械工業的發達,車輛日與劇增,所以會發生交通壅塞與交通事故等,因此解決這些交通問題成為ㄧ件刻不容緩的事。
台灣由於地窄人稠,交通壅塞,機車就成為最主要的替代的交通工具之一,它的優點為簡便、實用與輕巧,但是缺點是在發生交通意外事故時,機車傷亡的比例,往往偏高。
本論文的研究是將ㄧ台CCD攝影機固定架設於交通道路上,攝影機配合擷取卡將影像擷取下來之後,以即時的方法經過背景更新的技術,將移動物體由即時拍攝的影像中偵測出來,再經過去陰影、連通法、空洞補償、邊緣偵測、視覺長度與寬度的計算、交疊移動物體的切割與追蹤等步驟,最後做機車車速的估算、機車辨識與機車流量計算。所發展的偵側系統經過實驗結果,可以得到不錯的穩定性,可以運用於道路的機車自動偵測。
The development of the intelligent transportation system becomes a benchmark with developed country. The study of the intelligent system is becoming more and more important. Because the automobile industry is expanding, the traffic accident and traffic jam are frequently occurred. Therefore, how to solve the traffic issues becomes the important topic for the intelligent transportation system.
In Taiwan, because the populations are concentrated in the big cities, the traffic jam is frequently occurred. The motorcycle becomes the most convenient transportation for the Taiwanese. However, the driver of a motorcycle is always injured when the traffic accident occurred.
The study of this thesis proposes a motorcycle detection and recognition system. The system can extract the moving objects from the image sequence, and recognize the motorcycles from the moving objects. Experiments obtained by using complex road scenes are reported, which demonstrate the validity of the method in terms of robustness, accuracy, and time responses.
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
圖目錄 viii
1. 緒論 1
1.1 研究動機 1
1.2 研究方法 5
1.3 章節的安排 5
2. 系統架構 7
2.1 系統架設方法 7
2.2 系統硬體設備簡介 9
2.3 系統流程圖 11
3. 機車偵測演算法 14
3.1 去陰影 17
3.2 連通法 22
3.3 空洞補償 24
3.4 視覺長度與寬度的計算 26
4. 機車辨識技術演算法 32
4.1 數位影像之邊緣偵測 32
4.2 使用Fuzzy面積中心法 36
4.3 機車辨識技術 39
5. 機車交疊偵測與切割辨識演算法 46
5.1 移動物體交疊情形的分類 47
5.2 交疊偵測與切割辨識的方法 51
5.2.1 A類交疊情形的辨識方法 51
5.3.2 B類交疊情形的辨識方法 55
5.3.3 C類交疊情形的辨識方法 58
5.3.4 D類交疊情形的辨識方法 60
5.3.5 E類交疊情形的辨識方法 62
6.機車追蹤演算法 64
6.1 機車追蹤的程序 64
6.2 機車追蹤的實驗結果 66
7.實驗結果 68
8.結論與心得 75
參考文獻 76
論文發表 79
專利申請 80
[1]Gao, D., and Zhou, J., “Adaptive background estimation for real- time traffic monitoring,” Proc. of IEEE Conference on Intelligent Transportation Systems, Oakland, CA, USA, pp. 330-333, Aug. 25-29, 2001.
[2]Defauw, R., Lakshmanan, S., and Prasas, K.V., “A system for small target detection, tracking, and classification,” Proc. of IEEE Conference on Intelligent Transportation Systems, Tokyo, Japan, pp. 639-648, Oct. 5-8, 1999.
[3]Jolly, M. D., Lakshmanan, S., and Jain, A. K., “Vehicle segmentation and classification using deformable templates,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, No. 3, pp. 293-308, Mar. 1996.
[4]Jung, Y. K., and Hov, Y. S., “Traffic parameter extraction using video-based vehicle tracking,” Proc. of IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems, Tokyo, Japan, pp. 764-769, Oct. 5-8, 1999.
[5]Kamijo, S., Matsushita, Y., Ikeuchi, K., and Sakauchi, M., “Traffic monitoring and accident detection at intersections,” Proc. of IEEE Conference on Intelligent Transportation Systems, Tokyo, Japan, pp. 108-118, Oct. 5-8, 1999.
[6]http://www.motc.gov.tw/hypage.cgi?HYPAGE=stat01.asp
[7]http://www.npa.gov.tw/NPAGip/wSite/lp?ctNode=11395&CtUnit=1740&BaseDSD=7.html
[8]He, Z., Liu, J., and Li, P., “New method of background update for video-based vehicle detection,” The 7th International IEEE Conference on Intelligent Transportation Systems, Washington, DC, USA, pp. 580-584, Oct. 3-6, 2004.
[9]Fung, G. S. K., Yung, N. H. C., Pang, G. K. H., and Lai, A. H. S., “Towards detection of moving cast shadow for visual traffic surveillance,” IEEE International Conference on Systems, Man, and Cybernetics, Tucson, Vol. 4, AZ, USA, pp. 2505-2510, Oct. 7-10, 2001.
[10]Stauder, J., Mech, R., and Ostermann, J., “Detection of moving cast shadows for object segmentation,” IEEE Transaction on Multimedia, Vol. 1, No. 1, pp. 65-76, Mar. 1999.
[11]Kimachi, M., Wu, Y., and Ogata, S., “A vehicle recognition method robust against vehicles’ overlapping based on stereo vision,” Proc. of IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems, Tokyo, Japan, pp. 865-868, Oct. 5-8, 1999.
[12]Pang, C. C. C., Lam, W. W. L., and Yung, N. H. C., “A novel method for resolving vehicle occlusion in a monocular traffic-image sequence,” IEEE Transactions on Intelligent Transaction Systems, Vol. 5, No. 3, pp. 129-141, Sept. 2004.
[13]Yasuno, M., Yasuda, N., and Aoki, M., “Pedestrian detection and tracking in far infrared images,” Proc. of IEEE on Intelligent Transaction Systems, Vol. 8, pp. 182-187, Sept. 13-15, 2004.
[14]Yang, H. D., and Lee, S.W., “Multiple pedestrian detection and Tracking based on weighted temporal texture features,” Proc. of the 17th International Conference on Pattern Recognition (ICPR’04), Cambridge, England, pp. 248-251, Aug. 3-5, 2004.
[15]Willersinn, D., and Enkelmann, W., “Robust obstacle detection and tracking by motion analysis,” IEEE Conference on Intelligent Transportation System, Boston, MA, USA, pp. 717-722, Nov. 9-12, 1997.
[16]Chen, C. J., Chiu, C. C., Wu, B. F., Lin S. P., and Huang, C. D., “The moving object segmentation approach to vehicle extraction,” IEEE International Conference on Networking, Sensing and Control, Taipei, Taiwan, Vol. 1, pp. 19-23, Mar. 21-23, 2004.
[17]Fathy, M., and Siyal, M. Y., “A window- based image processing technique for quantitative and qualitative analysis of road traffic parameters,” IEEE Transactions on Vehicular Technology, Vol. 47, No. 4, pp. 1342-1349, Nov. 1998.
[18]Lim, D. W., Choi S. H., and Jun, J. S., “Automated detection of all kinds of violations at a street intersection using real-time individual vehicle tracking,” Proc. of 5th IEEE Southwest Symposium on Image Analysis and Interpretation, Sante Fe, NM, USA, pp. 126-129, Apr. 7-9, 2002.
[19]Ribaric, S., Pavesic, N., andPerkovic, Z., “Efficient edge detection method by using focus of attention area,” Proc. of the IEEE International on Industrial Electronics(ISIE '99), Bled, Slovenia, pp. 1218-1223, July 12-16, 1999.
[20]Demigny, D., and Kamlé, T., “A discrete expression of canny’s criteria for step edge detector performances evaluation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 11, pp. 1199-1211, Nov. 1997.
[21]http://neuron.csie.ntust.edu.tw
[22]Foresti, G. L., Murino, V., and Regazzoni, C., “Vehicle recognition and tracking from road image sequences,” IEEE Transactions on Vehicular Technology, Vol. 48, No. 1, pp. 301-318, Jan. 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top