跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/08 04:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黄廷翰
研究生(外文):Huang, Ting-Han
論文名稱:奈米級電磁脈衝防護材質開發及特性研究
指導教授:黃其清
指導教授(外文):Hwang, Chyi-Ching
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:應用化學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:64
外文關鍵詞:Combustion synthesisHexaferritesMagnetic propertiesTitanatesRelative PermittivityRelative permeability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以Sr(NO3)2、Fe(NO3) 3.9H2O、Ti粉及glycine(NH2CH2COOH)為反應物,已成功藉由「類乾式」燃燒合成法合成添加不同比例鈦酸鍶(SrFe12O19+xSrTiO3,,x=0.00、 0.05、 0.10、 0.15 和 0.20)之鍶鐵氧磁體粉末。經過均勻的混合及完全脫水後,可以得到均勻具可燃性的先驅物。在室溫下引燃先驅物,燃燒反應會伴隨大量氣體及產生大量疏鬆的產物。將初合成產物在不同溫度下煅燒(直到1200℃),再研究煅燒溫度對產物特性和相變化的影響。我們將所得的粉體以XRD、TG-DSC-MS、SEM、TEM、VSM和表面積量測儀作鑑測,對物質特性作分析。當x=0時,我們在煅燒溫度約1000℃時就可以得到幾乎是純的鍶鐵氧體。煅燒溫度為1050℃時,會產生晶體粒徑範圍約在60-75 nm且為單一磁區的純鍶鐵氧體(SrFe12O19),此時最大矯頑磁力(maximum intrinsic coercivity,iHc)為5.95kOe,飽和磁化量(magnetization value,Mmax)為60.13 emu/g,殘餘磁化量(residual magnetization,Mr)為31.75 emu/g。當煅燒溫度升到1200℃時,最大磁化量亦增加為68.52 emu/g;但最大矯頑磁力則降低了。根據實驗的數據,我們也提出了鍶鐵氧體生成的機制。我們再將以不同x值所合成出來的粉末以不同溫度煅燒,並和聚氨酯混合形成測試樣品。我們以向量網路分析儀來量測此複合型材料樣品,在1-12 GHz時的複數介電常數以及導磁率。當鈦酸鍶(SrTiO3)分別從0~20 mol%加進鍶鐵氧體,其效果不只是改善了介電常數值,也使導磁率得到了提昇。煅燒溫度對介電常數值以及導磁率的影響和加入鈦酸鍶的影響雷同。我們根據產物型態觀察、XRD以及磁性量測來對煅燒溫度和鈦酸鍶掺入量多寡所會產生的影響作判斷、解釋。
In this work, fine powders of SrFe12O19 with different contents of SrTiO3 additive (SrFe12O19+xSrTiO3, x=0.00, 0.05, 0.10, 0.15 and 0.20, respectively) were successfully prepared via a quasi-dry combustion synthesis route using Sr(NO3)2, Fe(NO3)3.9H2O, glycine (NH2CH2COOH) and Ti powder as reactants. By directly mixing and thoroughly dehydrating, a flammable dried mixture with good homogeneity can be obtained. Once ignited in the air at room temperature, it underwent a combustion process, and with a large amount of gas smoke, a voluminous loose product was yielded. The as-synthesized powder was calcined at various temperatures, up to 1200 ℃, to study the effects of calcination temperature on phase development and products’ properties. The resultant powders were characterized by X-ray diffractometry, infrared (IR) spectrometer, simultaneous thermalgravity (TG)-differential scanning calorimetry (DSC)-mass spectrometry (MS) analysis, scanning electron microscope (SEM), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and measurement of surface area. When x=0.00 was used, a nearly pure SrFe12O19 product was obtained at temperatures as low as 1000 ℃. Pure single-magnetic-domain SrFe12O19 powders with the crystalline size ranging from ~60 to 75 nm could be observed at 1050 ℃, which exhibited an maximum intrinsic coercivity (iHc) of 5.95 kOe, the attained magnetization value (Mmax, measured at 15kOe) of 60.13 emu/g as well as the residual magnetization (Mr) of 31.75 emu/g. Whereas, upon calcining at 1200 ℃, the Mmax increased further, to 68.52 emu/g; but the iHc value reduced. According to the experimental results obtained, a possible mechanism for the formation of strontium ferrite is proposed. The as-synthesized powders and the calcined ones, obtained using different x values, were introduced into polyurethane matrix to prepare a testing specimen. The relative complex permittivity ( ) and permeability ( ) of the composite materials were measured in the frequency range of 1-12 GHz by using a network analyzer. When the amount of SrTiO3 additive incorporated into SrFe12O19 varied from 0 to 20 mol%, not only improved the as expected, but also modified the . The effect of calcination temperature on the values of and was similar to that of amount of SrTiO3 additive. The influences of both the calcinations temperature and amount of SrTiO3 additive were explained judging from the results of observations of products’ morphology, XRD analysis of phase component and measurements of magnetic properties.
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 vi
表目錄 viii
圖目錄 ix
1. 緒論 1
1.1 前言……………………………………………………………………………1
1.2 研究動機及目的………………………………………………………………3
1.3 電磁波吸收體原理……………………………………………………………4
1.4 吸波材料………………………………………………………………………8
2. 文獻回顧與研究方法……………………………………………………………..9
2.1 文獻回顧………………………………………………………………………9
2.2 奈米材料對吸波特性的理論探討……………………………………………9
2.3 電磁波吸收體種類…………………………………………………………..10
2.4 鐵氧磁體……………………………………………………………………..11
2.5 實驗方法簡介(新式燃燒合成法)……………………………………......15
3. 實驗…………………………………………………………………..…………..18
3.1 藥品…………………………………………………………………………..18
3.2 分析儀器設備……………………………………………………………..…18
3.3 儀器分析檢測……………………………………………………………......19
3.4 鍶鐵氧磁體(SrFe12O19)之製備……………………………………………21
3.5 試片的製作…………………………………………………………………..22
4. 結果與討論………………………………………………………………………26
4.1 鍶鐵氧體(SrFe12O19)特性研究..……………………………………….…26
4.1.1 相變化……………………………………………………………...…26
4.1.2 IR光譜分析……………………………………………………...……28
4.1.3 熱分析……………………………………………………………...…30
4.1.4 顯微結構分析……………………………………………………...…34
4.1.5 磁滯特性…………………………………………………………...…38
4.2 鍶鐵氧體掺入鈦酸鍶(SrFe12O19+x SrTiO3)特性研究…………….…41
4.2.1 溫度對時間概況…………………………………………………...…41
4.2.2 相變化及型態觀察…………………………………………………...42
4.2.3 電磁特性…………………………………………………………...…45
4.3 鍶鐵氧體掺入鈦酸鍶(SrFe12O19+x SrTiO3)特性研究…………….…52
5. 結論………………………………………………………………………………54
參考文獻…………………………………………………………………………….56
論文發表…………………………………………………………………………….62
自傳………………………………………………………………………………….64
[1] 唐繼善,“電磁脈衝(EMP)簡介”,新新季刊,第13卷,第3期,第18-26頁,1985年。
[2] 鍾堅,“電磁脈衝攻擊”,科學研討期刊,第8期,2006年。
[3] Shin, J. Y. and Oh, J. H., “The Microwave Absorbing Phenomena of Ferrite Microwave Absorbers,” IEEE Transactions on Magnetics, vol.29, No. 6, pp.3437-3439, 1993.
[4] Shengping Ruan, Baokun Xu, Hui suo, Fengqing Wu, Siqing Xiang, Muyu Zhao,“Microwave absorptive behavior of ZnCo-substituted W-type Ba hexaferrite nanocrystalline composite material,”Journal of Magnetism and Magnetic Materials, vol.212, pp.175-177, 2000.
[5] 山口 喬,柳田博明,岡本祥一,近桂一郎,“磁性陶瓷”復漢出版社,台南市,1986年。
[6] 張洋舜,“微波吸收材料發展簡介”,新新雙月刊,第21卷,第4期,第46-50頁,1993年。
[7] S. B. Cho, D. H. Kang, and J. H. Oh,“Prediction of Electromagnetic Properties of MnZn Ferrite-Silicone Rubber Composites in Wide Frequency Range,”J. Mater. Sci. vol.31, pp. 4716-4719, 1991.
[8] C.-C. Hwang, T.-Y. Wu, J. Wan, J.-S. Tsai, “Develop of a novel combustion synthesis method for synthesizing of ceramic oxide powders,” Mater. Sci. Eng. B vol.111, pp. 49-56, 2004.
[9] C.-C. Hwang, J.-S. Tsai, T.-H. Huang, “Combustion synthesis of Ni-Zn ferrite by using glycine and metal nitrates-investigations of precursor homogeneity, product reproducibility, and reaction mechanism,” Mater. Chem. Phys., vol.93 pp.330-336, 2005.
[10] C.-C. Hwang, T.-H. Huang, J.-S. Tsai, C.-S. Lin, C.-H. Peng, “Combustion synthesis of nanocrystalline ceria (CeO2) powders by a dry route,” Mater. Sci. Eng. B , in press.
[11] W.-H., Lin, S.-K., and Jang Jean, C-S., Hwang, “Phase formation and composition of Mn-Zn ferrite powders prepared by hydrothermal method,” J. Mater. Res. pp.204-208, 1999.
[12] J.Schafer, W. Sigmund, S. Roy, and F. Aldinger, “Low temperature synthesis of ultrafine Pb(Zr,Ti)O3 powder by sol-gel combustion, ” J. Mater. Res. vol.12, pp. 2518-2521, 2000.
[13] 夏宏中,“隱形技術在武器載具之應用探討”,新新季刊,第29卷,第4期,第139-142頁,2001年。
[14] H. Kojima, “Fundamental Properties of Hexagonal Ferrites with Magnetoplumbite Structure”; Ch. 5, pp. 305-391 in Ferromagnetic Materials: A Handbook on the properties of Magnetically Ordered Substances, Vol. 3. Edited by E.P. Wohlfarth.
[15] K. Handea, C. Miyakawa, K. Goto, “Preparation of small particles of SrFe12O19 with high coercivity by hydrolysis of metal-organic complexes,” IEEE Trans. Magn. Mag., vol.23, pp.3134-3136, 1987.
[16] G. Elwin, I.P. Parkin, Q.T. Bui, L. Fernández Barquín, Q.A. Pankhurst, A.V. Komarov, Y.G. Morozov, “Self-propagating high-temperature synthesis of SrFe12O19 from reaction of strontium superoxide, iron metal and iron oxide powders,” J. Mater. Sci. Lett., vol.16, pp.1237-1239, 1997.
[17] J. Fang, J. Wang, L.-M. Gan, S.-C. Ng, J. Ding, X. Liu, “Fine strontium ferrite powders from an ethanol-based microemulsion,” J. Am. Ceram. Soc., vol.83pp.1049-1055, 2000.
[18] L.A. García-Cerda, O.S. Rodríguez-Fernández, P.J. Reséndiz-Hernández, “Study of SrFe12O19 synthesized by the sol-gel method,” J. Alloy. Compd., vol.369, pp.182-184, 2004.
[19] Y.P. Fu, C.H. Lin, “Fe/Sr ratio effect on magnetic properties of strontium ferrite powders synthesized by microwaved-induced combustion process,” J. Alloy. Compd., vol.386, pp.222-227, 2005.
[20] P.-H. Martha, “Microwave applications of soft ferrites,” J. Magn. Magn. Mater., vol.215, pp.171-183, 2000.
[21] P. Hernández, C. de Francisco, J. M. Munoz, J. Iniguez, L. Torres, M. Zazo, “Influence of sintering atmosphere on the magnetic after-effect in strontium ferrites,” J. Magn. Magn. Mater., vol.157/158, pp.123-124, 1996.
[22] P. Huang, L.J. Deng, J.X. Xie, D.F. Liang, L. Cheng, “Effect of BST additive on the complex permeability and permittivity of Z-type hexaferrite in the range of 1 MHz-1 GHz,” J. Magn. Magn. Mater., vol.271, pp.97-102, 2004.
[23] 萬軍,“電磁波抑制材料特性研究”,碩士論文,國防大學中正理工學院,桃園,2004。
[24] 汪建民,“陶瓷技術手冊(上)”,粉末冶金協會,新竹縣,1999年。
[25] 賴元泰,“電磁波吸收材質之研究”,碩士論文,中原大學,桃園,2002。
[26] 刑麗英,“隱身材料”,化學工業出版社,北京,2004年。
[27] S. Kulkarni, J. Shrotri, C.E. Deshpande, S.K. Date, “Synthesis of chemically coprecipitated hexagonal strontium-ferrite and its characterization,” J. Mater. Sci., vol.24, pp. 3739-3744, 1989.
[28] V.V. Pankov, M. Pernet, P. Germi, P. Mollard, “Fine hexaferrite particles for perpendicular recording prepared by the coprecipitation method in the presence of an inert component,” J. Magn. Magn. Mater., vol.120, pp.69-72, 1993.
[29] A. Ataie, S. Heshmati-Manesh, “Synthesis of ultra-fine particles of strontium hexaferrite by a modified co-precipitation method,” J. Eur. Ceram. Soc., vol.21, pp.1951, 2001.
[30] A. Ataie, I.R. Harris, C.B. Ponton, “Magnetic properties of hydrothermally synthesized strontium hexaferrite as a function of synthesis conditions,” J. Mater. Sci., vol.30, pp.1429, 1995.
[31] C. Sürig, K.A. Hempel, D. Bonnenberg, “Formation and microwave absorption of barium and strontium ferrite prepared by sol-gel technique,” Appl. Phys. Lett., vol.63, pp.2836-2838, 1993.
[32] J.-H. Choy, Y.-S. Han, S.-W. Song, “Preparation and magnetic properties of ultrafine SrFe12O19 particles derived from a metal citrate complex,” Mater. Lett., vol.19, pp.257-262, 1994.
[33] Z. X. Yue, J. Zhou, L.T. Li, H.G. Zhang, Z.L. Gui, “Synthesis of nanocrystalline NiCuZn ferrite powders by sol-gel auto-combustion method,” J. Magn. Magn. Mater., vol.208, pp.55-60, 2000.
[34] Z.A. Munir, Ceram. Bull. 67 (1988) 342.
[35] P.B. Avakyan, M.D. Nersesyan, A.G. Merzhanov, Am. Ceram. Soc. Bull. 75 (1996) 50-55.
[36] M. J. O’Neil (Ed.) et al, The Merck Index, 13th ed, Merck & Co. Inc, New Jersey, 2001.
[37] K. Nakamoto, “Part II Inorganic compounds”; p. 106 in Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed. Wiely-Interscience, New York, 1986.
[38] R.A. Nyquist, R.O. Kagel (Eds.), Infrared Spectra of Inorganic Compounds, vol. 4, Academic Press, San Diego, CA, 1997.
[39] Joint Committee on Powder Diffraction Standards (JCPDS) file number: 84-1531.
[40] E.P. Wohlfarth; see Ref. [1], pp.334-342.
[41] R. Valenzuela, Magnetic Ceramics, Cambridge University Press, Cambridge, U.K., 1994.
[42] A.S. Albuquerque, J.D. Ardisson, W.A.A. Maccdo, “Nanosized powders of NiZn ferrite:Synthesis, structure, and magnetism,” J. Appl. Phys., vol.87, pp.4352-4357, 2000.
[43] R. Nawathey-Dikshit, S.R. Shinde, S.B. Ogale, S.D. Kulkarni, S.R. Sainkar, S.K. Date, “Synthesis of single domain strontium ferrite powder by pulsed laser ablation,” Appl, Phys. Lett., vol.68, pp.3491-3493, 1996.
[44] D. W. Richerson, “Dielectric, Magnetic, and Optical Behavior”; Ch. 7 pp. 251-312 in Modern Ceramic Engineering: Properties, Processing and Use in Design, 2nd ed. Marcel Dekker, Inc., NY, 1992.
[45] T.Tsutaoka, M.Ueshima, T. Tokunaga, T.Nakamura, K. Hatakeyama, “Frequency dispersion and temperature variation of complex permeability of Ni-Zn ferrite composite materials,” J.Appl. Phys., vol.78, pp.3983-3991, 1995.
[46] A. Verma, T.C. Goel, R.G. Mendiratta, “Frequency variation of initial permeability of NiZn ferrites prepared by the citrate precursor method,” J. Magn. Magn. Mater., vol.210, pp.274-278, 2000.
[47] K. Ishino, Y. Narumiya, Am. Ceram. Soc. Bull. 66 (1987) 1469-1474.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top