(3.215.183.251) 您好!臺灣時間:2021/04/22 10:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉奕廷
研究生(外文):Yi-Ting Liu
論文名稱:添加物修飾鉑陽極觸媒之乙醇氧化電化學活性評估
指導教授:汪成斌汪成斌引用關係
指導教授(外文):Chen-Bin Wang
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:應用化學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:74
中文關鍵詞:氧化乙醇活性碳分散度添加物
外文關鍵詞:ethanol oxidationdispersion
相關次數:
  • 被引用被引用:3
  • 點閱點閱:223
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以活性碳(Vulcan XC-72)為支撐物,利用沉澱析出法製得一系列修飾的鉑陽極觸媒:PtCe/C、PtSn/C、PtCo/C及PtRu/C。以XRD和TEM鑑定支撐性觸媒結構及顆粒大小;以TPR了解觸媒的還原情形,及添加物與鉑觸媒之間的作用力。為進一步了解觸媒性質與催化活性的關聯,配合循環伏安法(CV)的測試,確認鉑陽極觸媒對氧化乙醇的電化學活性及CO消除能力。
XRD與TEM的鑑定顯示,所製備的陽極觸媒都具有相當高的金屬分散度,由TPR得知金屬與氧化物之間的作用力強。由CV測試氧化乙醇電化學活性得知,經添加物修飾的Pt/C觸媒均有良好的活性,
1. 在PtCo/C、PtRu/C觸媒中,係因CoO及Ru能促使CO的消除使得CO毒化的現象減低而提升活性。所以隨著CoO及Ru含量的增加,消除CO的效果就愈明顯,在此兩種觸媒中以20Pt30Co及20Pt30Ru的活性最佳。
2. 在PtSn/C觸媒中,以PtSn合金型態能有效促使C-C鍵的裂解,使得反應順利進行而提升活性。隨Sn的含量增加,Pt被包覆的情況就愈嚴重,而使Pt的活性位置減少,造成活性的下降,在此系列觸媒中以20Pt10Sn活性最佳。
3. 在PtCe/C觸媒中,CeO2確實能夠增加觸媒的分散度,使得反應活性面積增加而提升活性,在此系列觸媒中以20Pt20Ce活性最佳。
In this study, Pt-based anode catalysts have been prepared by the deposition-precipitation method (DP) and commercial carbon black (Vulcan XC-72) was used as the support. Effects of modification on activity of Pt/C catalysts by second materials were pursued and including: CeO2, CoO, Sn, and Ru. The information about particle size and catalyst structure were physically characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The technique of temperature programmed reduction (TPR) was used to explore the reductive behavior of the oxidized catalysts and also the interaction between platinum and second materials. The catalytic activity of the Pt-based anode catalysts toward electro-oxidation of ethanol was examined by cyclic voltammetry (CV).
TEM and XRD examinations indicated that metal crystallites were finely dispersed on the reduced catalyst. TPR characterization suggested that deposited metallic crystallites strongly interacted with the oxide species. The activity of Pt-based catalysts was found promoted by incorporation of second material. Based on our findings, the following conclusions can be drawn:
1. In the PtCo/C and PtRu/C catalysts, the CO-poisoning effect can be significantly released by the incorporation of CoO and Ru, respectively. The promotion effect was increased by the amount of second materials. As a result, 20Pt30Co and 20Pt30Ru showed the best electrochemical activity for ethanol oxidation.
2. For Sn modified Pt/C catalyst, the formation of PtSn alloy enhanced the probability for broke the C-C bond. However, the amount of tin used for PtSn/C promotion is limitated. A further increase in Sn content would occlude a large fraction of platinum crystallites attributed by the decreased of available Pt site for ethanol electro-oxidation. The promotion by Sn is optimized at 10% in catalyst composition (20Pt10Sn).
3. The promoting role of ceria for ethanol oxidation has been attributed to an increased dispersion of Pt crystallites. As the result, 20Pt20Ce showed the best electroactivity.
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 vi
表目錄 ix
圖目錄 x
1. 緒論 1
1.1 綠色燃料 1
1.2 燃料電池的發展現況 1
1.3 直接乙醇燃料電池工作原理 3
1.4 DEFC陽極觸媒的發展 5
1.5 陽極觸媒文獻回顧 7
1.6 研究動機及目的 12
2. 實驗 13
2.1 藥品 13
2.2 觸媒的製備 13
2.2.1 Pt/C觸媒之製備 13
2.2.2 PtCe/C觸媒之製備 13
2.2.3 不同溫度下PtCe/C觸媒之製備 16
2.2.4 PtSn/C觸媒之製備 17
2.2.5 PtCo/C觸媒之製備 17
2-2.6 PtRu/C觸媒之製備 17
2.3 觸媒特性鑑定 18
2.3.1 金屬負載量量測 18
2.3.2 X光粉末繞射儀 18
2.3.3 穿透式電子顯微鏡 18
2.3.4 程溫還原 19
2.4 電化學活性測試 22
2.4.1 電極製備 22
2.4.2 循環伏安法 22
2.4.3 CO消除 22
3. 結果與討論 24
3.1 PtCe/C觸媒特性鑑定及活性測試 24
3.1.1 XRD和TEM分析 24
3.1.2 TPR分析 28
3.1.3 CV活性測試 35
3.1.4 PtCe-60觸媒分佈示意圖 42
3.2 PtCo/C觸媒特性鑑定及活性測試 42
3.2.1 XRD和TEM分析 42
3.2.2 TPR分析 46
3.2.3 CV活性測試 46
3.2.4 PtCo觸媒分佈示意圖 46
3.3 PtSn/C 50
3.3.1 XRD和TEM分析 50
3.3.2 TPR分析 50
3.3.3 CV活性測試 55
3.3.4 PtSn觸媒分佈示意圖 55
3.4 PtRu/C觸媒特性鑑定及活性測試 58
3.4.1 XRD和TEM分析 58
3.4.2 TPR分析 58
3.4.3 CV活性測試 62
3.4.4 PtRu觸媒分佈示意圖 62
3.5 CO消除 65
4. 結論 68
參考文獻 70
自 傳 74
[1] Klaiber, T.,“Fuel cells for transport: can the promise be fulfilled? Technical
requirements and demands from customers,”J. Power Sources, Vol. 61, pp.61-69, 1996.
[2] Adamson, K. A. , and Pearson, P.,“Hydrogen and methanol: a comparison of
safety, economics,efficiencies and emissions,”J. Power Sources, Vol. 86, pp.548-555, 2000.
[3] 陳志威、吳文騰,“生生不息的生質能源”,科學發展,第359期,第9-11 頁,2002。
[4] McNicol, B. D., Rand, D. A. J., and Williams, K. R.,“Direct methanol-air fuel
cells for road transportation,”J. Power Sources, Vol. 83, pp.15-31, 1999.
[5] Hart, D., Leach, M. A., Fouquet, R., Pearson, P. J., and Bauen, A.,“Methanol infrastructure-will it affect the introduction of SPFC vehicles?,”J. Power Sources, Vol. 86, pp.542-547, 2000.
[6] Kiso, F., and Arashi, N.,“Hybrid Methanol-Production Process,”Appl. Energy, Vol. 59, pp.215-228, 1998.
[7] Yang, H., Nicola´s, A. V., Le´ger, J. M., and Lamy, C.,“Tailoring, Structure, and Activity of Carbon-Supported Nanosized Pt-Cr Alloy Electrocatalysts for Oxygen Reduction in Pure and Methanol-Containing Electrolytes,”J. Phys. Chem. B., Vol. 108, pp.1938-1947, 2004.
[8] Lima, A., Coutanceau, C., Leger, J. M., and Lamy, C.,“Investigation of ternary catalysts for methanol electrooxidation,”J. Applied Electrochemistry, Vol. 31, pp.379-386, 2001.
[9] 楊志忠、林頌恩、韋文誠,“燃料電池的發展現況”, 科學發展,第367
期,第31-33頁,2002。
[10] Zhou, W. J., Song, S. Q., Li, W. Z., Zhou, Z. H., Sun, G. Q., and Xin, Q.,“Direct ethanol fuel cells based on PtSn anodes: the effect of Sn content on the fuel cell performance,”J. Power Sources, Vol. 140, pp.50-58, 2005.
[11] Jiang, L., Zhou, Z., Li, W., Zhou, W., Song, S., Li, H., Sun, G., and Xin, Q.,“Effects of Treatment in Different Atmosphere on Pt3Sn/C Electrocatalysts for Ethanol Electro-oxidation,”Energy & Fuels, Vol. 18, pp.866-871, 2004.
[12] Mayrhofer, K. J. J., Arenz, M., Blizanac, B. B., Stamenkovic, V., Ross, P. N., and Markovic, N. M.,“CO surface electrochemistry on Pt-nanoparticles: A selective review,”Electrochimica Acta, Vol. 50, pp.5144-5154, 2005.
[13] Zhou, W., Zhou, Z., Song, S., Li, W., Sun, G., Tsiakaras, P., and Xin, Q.,“Pt based anode catalysts for direct ethanol fuel cells,”Applied Catalysis B: Environmental, Vol. 46, pp.273-285, 2003.
[14] Jiang, L., Sun, G., Sun, S., Liu, J., Tang, S., Li, H., Zhou, B., and Xin, Q.,
“Structure and chemical composition of supported Pt–Sn electrocatalysts for ethanol oxidation,”Electrochim. Acta, Vol. 50, pp.5384-5389, 2005.
[15] Jiang, L., Sun, G., Zhou, Z., Zhou, W., and Xin, Q.,“Preparation and
characterization of PtSn/C anode electrocatalysts for direct ethanol fuel cell,”catalysis Today, Vol. 93-95, pp.665-670, 2004.
[16] Fujiwara, N., Friedrich, K. A., and Stimming, U.,“Ethanol oxidation on PtRu electrodes studied by differential electrochemical mass spectrometry,”J. Electroanal. Chem.,Vol. 472, pp.120-125, 1999.
[17] Liu, Z., Ling, X. Y., Su, X., Lee, J. Y., and Gan, L. M.,“Preparation and
characterization of Pt/C and Pt Ru/C electrocatalysts for direct ethanol fuel cells,”J. Power Sources, Vol. 149, pp.1-7, 2005.
[18] Zhou, W.J., Li, W.Z., Song, S.Q., Zhou, Z.H., Jiang, L.H., Sun, G.Q., Xin Q., Poulianitis, K., Kontou, S., and Tsiakaras, P.,“Bi- and tri-metallic Pt-based anode catalystsfor direct ethanol fuel cells,”J. Power Sources, Vol. 131, pp.217-223, 2004.
[19] Lamy, C., Rousseau, S., Belgsir, E. M., Coutanceau, C., and Léger, J. M.,“Recent progress in the direct ethanol fuel cell: development of new platinum–tinelectro catalysts,”Electrochimica Acta, Vol. 49, pp.3901-3908, 2004.
[20] Spinace, E. V. , Linardi, M., and Neto, A. O.,“Co-catalytic effect of nickel in the electro-oxidation of ethanol on binary Pt–Sn electrocatalysts,”Electrochemistry Communications, Vol. 7, pp.365-369, 2005.
[21] Zhao, X., Li, W., Jiang, L., Zhou, W., Xin, Q., Yi, B., and Sun, G.,“Multi-wall carbon nanotube supported Pt–Sn nanoparticles as an anode catalyst for the direct ethanol fuel cell,”Letters to the Editor / Carbon, Vol. 42, pp.3251-3272, 2004.
[22] Lin, W. F., Zei, M. S., Eiswirth, M., Ertl, G., Iwasita, T. and Vielstich, W.,“How To Make Electrocatalysts More Active for Direct Methanol OxidationsAvoid PtRu Bimetallic Alloys,”J. Phys. Chem. B, Vol. 103, pp.6968-6977, 1999.
[23] Jeffrey, W., Rhonda, M., Karen, E., and Debra, R.,“How To Make
Electrocatalysts More Active for Direct Methanol Oxidations-Avoid PtRu Bimetallic Alloys,”J. Phys. Chem. B, Vol. 104, pp.9772-9776, 2000.
[24] Delime, F., Leager, J. M., and Lamy, C.,“Enhancement of the electrooxidation of ethanol on a Pt-PEM electrode modified by tin.Part I: Half cell study,”J. Applied Electrochemistry, Vol. 29, pp.1249-1254, 1999.
[25] Spinace, E. V., Neto, A. O., Vasconcelos, T. R. R., and Linardi, M.,
“Electro-oxidation of ethanol using PtRu/C electrocatalysts prepared by alcohol-reduction process,”J. Power Sources, Vol. 137, pp.17-23, 2004.
[26] Baldauf, M., and Preidel, W.,“Status of the development of a direct methanol fuel cell,”J. Power Sources, Vol. 84, pp.161-166, 1999.
[27] Scott, K., Taama, W.M., Argyropoulos, P., and Sundmacher, K.,“The impact of mass transport and methanol crossover on the direct methanol fuel cell,”J. Power Sources, Vol. 83, pp.204-216, 1999.
[28] Zhou, W.J., Zhou, B., Li, W.Z. , Zhou, Z.H., Song, S.Q., Sun, G.Q., Xin, Q.,
Douvartzides, S., Goula, M., and Tsiakaras, P.,“Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts”J. Power Sources, Vol. 126, pp.16-22, 2004.
[29] 林鴻冠,“氧化鈷及CoOx/MCM-41的特性分析與一氧化碳氧化反應性之研究”, 碩士論文,國防大學中正理工學院應用化學所,大溪,2002。
[30] Wang, C. B., Tang, C. W., Gau, S. J., and Chien, S. H., Catalysis Letters, Vol. 101, pp. 1-2, 2005.
[31]Metallkd., Vol. 69, pp.524-529, 1978.
[32] 張書銘, “支撐在活性碳上鉑-釕雙金屬觸媒的製備及鑑定”, 碩士論文,國立清華大學化學研究所,新竹,2004。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔